C–H Activation of π-Arene Ruthenium Complexes

Luke A. Wilkinson,1 Jack A. Pike,1 James W. Walton1*

1. Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom;

KEYWORDS: C–H Activation; Pi-Arene Metal Complexes; Organometallic Ruthenium Complexes; Concerted Metalation-Deprotonation; Photolysis.

ABSTRACT: We present a C–H activation protocol for aromatic compounds that overcomes the current limitations of the need for directing group or covalently-bound activating groups, by exploiting the increase in C–H acidity of aromatic compounds when π-coordinated to a Ru(II) centre. The increased acidity facilitates catalytic concerted metalation-deprotonation and subsequent arylation reactions. We present the development and optimization of the C–H activation protocol and show the applicability of the reaction to a range of aromatic substrates, including the simplest of substrates (benzene). Furthermore, we demonstrate the recyclability of the activating Ru(II) fragment, using photolysis and give a mechanistic study, which provides strong evidence that this reaction occurs via a silver-mediated C–H bond activation. This is the first time Ru complexes have been shown to allow C–H activation of arenes by a π-coordination mechanism.
INTRODUCTION

C–H activation is a major current theme in synthetic chemistry, as it has the potential to simplify chemical transformations in an atom efficient manner.1–5 Applications of this versatile synthetic strategy range from pharmaceutical6–8 and agrochemical9,10 to bulk commodity chemical11,12 and materials syntheses13,14. Activation protocols for sp, sp2 and sp3 carbon centres have all been reported in the literature,15 but in each case privileged substrates are required to facilitate activation. The majority of C(sp2)–H activation reactions require substrates that fall in to one of three classes: (1) arenes incorporating a directing group (DG) that coordinates a transition metal catalyst; (2) electron rich arenes and (3) electron deficient arenes (Scheme 1). The directing group strategy requires arenes that incorporate a coordinating moiety, often amido or pyridyl that positions a metal catalyst close to a C–H bond and activation occurs via a cyclometalated intermediate. C–H activation is typically \textit{ortho} to the DG,16–18 although \textit{meta}19–21 and \textit{para}22 C–H activation have also been achieved. Many precious (Pd,23,24 Ir,25,26 Rh27,28) and non-precious metal (Mn,29,30 Fe,31 Co,32 Cu33) catalyzed reactions have been reported that rely upon this directing group strategy. Heteroaromatics, with electron-rich \pi systems, such as furans, thiophenes and azoles, can all undergo Pd-catalysed C–H activation.34 Directing groups are not required in these systems as the intrinsic electronic properties of the heteroaromatics control regioselectivity. Electron-deficient arenes can undergo C–H activation, but typically require two electron-withdrawing groups (EWGs) \textit{ortho} to the C–H bond of interest.35 An important example in this class of reaction is the C–H activation of pentafluorobenzene,36 reported by Fagnou, via a concerted metalation-deprotonation (CMD) mechanism.
Scheme 1. Strategies towards C–H activation (DG = directing group, EWG = electron-withdrawing group)

Each of these three strategies for C–H activation requires either arenes with covalently bound substituents or heteroaromatics. As a result, substrate scope is limited and additional synthetic steps are required to incorporate the required substituents. This is a major drawback to the applicability of the current state-of-the-art C–H activations. Hence, new reaction pathways are required to overcome these limitations.

Metal complexes can activate aromatics through π-complexation,\(^\text{37-45}\) which typically leads to an increase in arene electrophilicity, as well as an increase in acidity of arene C–H bonds.\(^\text{44}\) Larrosa has exploited the latter property to develop a C–H activation protocol that involves Pd-catalysed coupling between a \([\eta^6\text{-arene}]\text{Cr(CO)}_3\] complex and aryl iodides (Scheme 2i).\(^\text{46}\) Subsequent oxidative cleavage of the Cr–arene bond with MnO\(_2\) leads to formation of a selection of biaryls. Recently, we reported a catalytic S\(_N\)Ar reaction of unactivated aryl halides,\(^\text{47}\) which exploits the increase in electrophilicity of \(\eta^6\)-bound arenes. This reaction
proceeds via a transient [(η⁶-arene)RuCp]^+ intermediate (Scheme 2i), requires 10 mol% of the Ru catalyst and gives yields up to 90%.

(i) C-H activation of (η⁶-arene)-Cr complex

(ii) S_NAr via transient (η⁶-arene)-Ru complex

(iii) This work

Scheme 2. Arene activation through π-coordination.

We hypothesize that π-coordination of arenes to a Ru^{II}Cp fragment will allow C–H activation of the bound arene through a CMD mechanism, due to the increase in acidity of the C–H bond. Supported by our catalytic S_NAr, we suggest an analogous C–H activation reaction catalytic in Ru is feasible, via transient formation of the activated (η⁶-arene)–Ru complex. Herein, we report the successful development of C–H activation of [(η⁶-arene)RuCp]^+ complexes, proceeding via a concerted metalation-deprotonation mechanism (Scheme 2iii). We show the application of this reaction to aryl fluorides and unactivated arenes, benzene and p-cymene. Furthermore, we demonstrate the potential to recover the activating Ru^{II}Cp fragment via photolysis, which represents a key step towards the development of Ru-catalysed C–H activation of unfunctionalized substrates, via an arene exchange mechanism. This is the first time Ru complexes have been used to achieve C–H activation of arenes by this π-coordination strategy.
RESULTS AND DISCUSSION

Initially, we sought to investigate the C‒H activation of *ortho*-fluorotoluene bound to a [CpRu]^+ fragment. Reaction of [CpRu(NCMe)_3]PF_6 and *ortho*-fluorotoluene in 1,2-dichloroethane afforded [CpRu(η⁶-(o-MeC₆H₅F))PF_6 (1a) in 88% yield. This complex was fully characterized by multinuclear NMR, mass spectrometry and C,H,N elemental analysis.

Reaction Optimization

Predicting a C‒H activation mechanism involving concerted metalation-deprotonation, our initial catalytic reaction conditions emulated those of previous work, using catalytic Pd(PPh₃)₄ along with stoichiometric Ag(I) salt, carboxylic acid and base (Table 1, Entry 1). Upon observing no reaction, we reasoned that solvent effects were likely to play an important role in stabilizing key transition states of the C‒H activation. While several solvents also returned no product, reaction in 1,2-dichloroethane gave the desired product, albeit in low yield (Table 1, entry 3). The coupled product 1b was easily identified by characteristic changes in the ^1H- and ^19F-NMR spectra, along with further confirmation by high resolution mass spectrometry. By increasing the reaction temperature to 120 °C, product conversion increased to 38% (Table 1, entry 5). A screen of potential bases (see Supp. Info. For full details) identified 2,2,6,6-tetramethylpiperidine (TMP) as the most effective, giving a conversion of 44% (Table 1, entry 9). The role of the TMP is likely the deprotonation of the carboxylic acid precursor.
Table 1 C-H activation reaction between complex 1a and 4-iodoanisole under a variety of conditions (see Supp. Info. for full experimental detail). Conversions to 1b were determined by 1H- and 19F-NMR against an internal standard. (Cp = cyclopentadienyl, 1-AdCO$_2$H = 1-adamantanecarboxylic acid, 1,2-DCE = 1,2-dichloroethane, DMF = N,N-dimethylformamide, TMP = 2,2,6,6-tetramethylpiperidine, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, NMI = N-methylimidazole).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Base</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toluene</td>
<td>60</td>
<td>K$_2$CO$_3$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>DMF</td>
<td>60</td>
<td>K$_2$CO$_3$</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1,2-DCE</td>
<td>60</td>
<td>K$_2$CO$_3$</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1,2-DCE</td>
<td>100</td>
<td>K$_2$CO$_3$</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>1,2-DCE</td>
<td>120</td>
<td>K$_2$CO$_3$</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>1,2-DCE</td>
<td>120</td>
<td>Pyridine</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>1,2-DCE</td>
<td>120</td>
<td>DBU</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1,2-DCE</td>
<td>120</td>
<td>NMI</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1,2-DCE</td>
<td>120</td>
<td>TMP</td>
<td>44</td>
</tr>
</tbody>
</table>

Throughout our initial investigations, in all reactions that had undergone C‒H activation, we observed 5–30% conversion to a reaction side-product, which we identified as complex 1c, in which a phenyl group replaces the anisyl group in the reaction product (Scheme 3). We supposed that this species may have formed by a demethoxylation process, in which the aryl ether bond is broken. To test this hypothesis, we subjected 2a to the reaction conditions in Table 1, entry 9 and found only formation of the expected C‒H activation product 2b and the phenyl-containing side-product 1c, but, importantly, no formation of 2c, a potential product of breaking the aryl ether bond. This result led us to reason that the source of the phenyl coupled product must be the
PPh₃ ligand of the Pd catalyst. Such scrambling of the aryl groups has previously been observed.⁴⁹,⁵⁰ To avoid formation of this side-product, we explored the use of alternative Pd catalysts, along with a selection of phosphine ligands. We also chose to investigate the effect of the carboxylic acid and silver salt upon the reaction (Table 2).

Scheme 3 Formation of phenylated by-product 1c. a reaction conditions shown in Table 1, Entry 9.

The C–H activation reaction proceeded in the absence of ligand using PdCl₂, Pd₂(dba)₃ and Pd(OAc)₂ (Table 2, entries 1, 3 and 6). However, addition of phosphine ligands increased conversion significantly. Phosphine ligands containing no phenyl groups (Table 2, entries 5, 7 and 8) circumvented the formation of phenylated product 1c and generally gave the highest conversions. The combination of Pd(OAc)₂ and DavePhos gave 69% conversion to the desired product. An exploration into the effect of the carboxylic acid revealed that the absence of acid severely hindered the reaction (Table 2, entry 9) and that 1-adamantanecarboxylic acid (1-AdCO₂H) was the optimum choice of acid. The conjugate base of the carboxylic acid is involved in a key transition state of the CMD reaction (vide infra). Removing silver from the reaction mixture completely turned off product formation (Table 2, entry 11). Alternative silver salts to
Ag$_2$CO$_3$ gave no improvement in reaction conversion, but increasing the quantity of Ag$_2$CO$_3$ to 2 equivalents showed a further increase in reaction conversion. Overall optimized reaction conditions gave 83% conversion (Table 2, entry 16).

Table 2 C-H activation reaction between complex 1a (1 equivalent) and 4-iodoanisole (1.5 equivalents) under a variety of conditions (see Supp. Info. for full experimental detail). Conversions to 1b were determined by 1H- and 19F-NMR against an internal standard. (Cp = cyclopentadienyl, 1-AdCO$_2$H = 1-adamantanecarboxylic acid, 1,2-DCE = 1,2-dichloroethane, TMP = 2,2,6,6-tetramethylpiperidine, dppe = 1,2-bis(diphenylphosphino)ethane, dba = dibenzylideneacetone, DavePhos = 2-dicyclohexylphosphino-2’-(N,N-dimethylamino)biphenyl; SPhos = 2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl).

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Pd]</th>
<th>Ligand</th>
<th>Acid</th>
<th>Ag salt (equiv.)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PdCl$_2$</td>
<td>–</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>PdCl$_2$</td>
<td>dppe</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>Pd$_2$(dba)$_3$</td>
<td>–</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Pd$_2$(dba)$_3$</td>
<td>dppe</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Pd$_2$(dba)$_3$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Pd(OAc)$_2$</td>
<td>–</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Pd(OAc)$_2$</td>
<td>SPhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>–</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>PivCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.75)</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>AgOTf (1.50)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$O (0.75)</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (0.50)</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (1.00)</td>
<td>74</td>
</tr>
<tr>
<td>16</td>
<td>Pd(OAc)$_2$</td>
<td>DavePhos</td>
<td>1-AdCO$_2$H</td>
<td>Ag$_2$CO$_3$ (2.00)</td>
<td>83</td>
</tr>
</tbody>
</table>
In a final investigation we varied the solvent choice under optimized conditions. The reaction proceeded in dioxane (46%) and CHCl$_3$ (23%), but 1,2-dichloroethane remained the best reaction solvent. Varying the quantity of carboxylic acid showed no improvement in reaction conversion, whilst increasing the amount of Pd, led to the formation of di-substituted product, with 20 mol% Pd(OAc)$_2$ giving 75% mono-substituted- and 5% di-substituted product (see Supp. Info. for full details).

Reaction Scope

With optimized conditions in hand, we set out to explore the scope of the C-H activation reaction (Table 3). We found that aryl iodides outperformed aryl bromides (Table 3, entry 2) and aryl chlorides were inactive under the reaction conditions, consistent with a mechanism that proceeds via oxidative addition. A selection of aryl iodides underwent reaction in varying yields, with electron-rich aryl iodides (Table 3, entries 1, 5 and 8) giving higher conversions than electron-deficient substrates (Table 3, entry 6). This is more likely due to the less efficient transmetalation of the subsequent Pd-Ar species, as opposed to slower oxidative addition, which is generally successful for electron-deficient arenes. Hindered aryl iodides also showed a reduction in reaction conversion (Table 3, entry 7) and iodobutane and vinyl iodide gave no coupled product under the reaction conditions.

With iodoanisole as a coupling partner, we also explored the C–H activation of a range of η6-coordinated arenes. The fluorobenzene complex proceeded to give 60% mono-substituted product and approximately 5% di-substitution, resulting from C–H activation at each ortho position (Table 3, Entry 9). η6-Bound nitrobenzene and chlorotoluene showed no C–H activation, returning only starting material, while trifluorotoluene gave a small amount of conversion.
Pleasingly, under the optimized reaction conditions, η^6-bound benzene and p-cymene gave coupled products, albeit in moderate yields (16% and 20%, respectively, Table 3, entries 13 and 14), demonstrating the potential for C–H activation of non-fluorinated arenes. The ability to activate unfunctionalized arenes via this reaction mechanism is extremely exciting, as the vast majority of C–H activation mechanisms require the presence of directing or activating groups. η^6-Bound electron-rich arene were not tested, as it is unlikely they will undergo concerted metalation-deprotonation. Isolated yields are generally low, due to the small scale of reaction (15 mg starting complex).

Table 3 C-H Activation reaction between various Ru(II) complexes (1 equivalent) and aryl halides (1.5 equivalents) under the optimized reaction conditions (see Supporting Information for full list of conditions). Conversions were determined by 1H- and 19F-NMR against an internal standard. Isolated yields in parentheses. Reactions with conversions less than 20% were not isolated. *Reaction of the fluorobenzene complex led to 5% formation of di-substituted product.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>X</th>
<th>R'</th>
<th>Conversion (%)</th>
<th>Entry</th>
<th>R</th>
<th>X</th>
<th>R'</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>F</td>
<td>I</td>
<td>83 (33)</td>
<td>8</td>
<td>Me</td>
<td>F</td>
<td>I</td>
<td>54 (5)</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>F</td>
<td>Br</td>
<td>52 (29)</td>
<td>9</td>
<td>Me</td>
<td>F</td>
<td>I</td>
<td>60* (10)</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>F</td>
<td>Cl</td>
<td>0</td>
<td>10</td>
<td>Me</td>
<td>NO$_2$</td>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>F</td>
<td>I</td>
<td>68 (15)</td>
<td>11</td>
<td>Me</td>
<td>CF$_3$</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Me</td>
<td>F</td>
<td>I</td>
<td>61 (8)</td>
<td>12</td>
<td>Me</td>
<td>Cl</td>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Me</td>
<td>F</td>
<td>CO$_2$H</td>
<td>6</td>
<td>13</td>
<td>Me</td>
<td>I</td>
<td>I</td>
<td>16</td>
</tr>
</tbody>
</table>
Photolysis

One advantage to using the [CpRuII] fragment as a method to activate η6-bound arenes is the ease with which the bound arene can be liberated upon completion of the reaction, with regeneration of [CpRu(NCMe)$_3$]$^+$. To investigate the potential of metal complex recovery, we carried out a reaction between η6-bound o-fluorotoluene and iodoanisole under the optimized reaction conditions. Following purification by column chromatography, a solution of the η6-bound product in d$_3$-MeCN was exposed to UV light (365 nm, 9 W). Photolysis was monitored by 1H-NMR (Figure 1). After 2 h irradiation 85% photolysis had occurred, leading to the unbound arene product and [CpRu(d$_3$-NCMe)$_3$]$^+$. After 6 h, the photolysis had proceeded to 99% completion. The liberated Ru complex, [CpRu(NCMe)$_3$]$^+$ is the same complex used to generate the initial η6-bound o-fluorotoluene that underwent C–H activation. This demonstrates the potential for a C–H activation protocol that is overall catalytic in Ru. In our previous work, we have shown reactions of arenes that are catalysed by transient formation of η6-arene–Ru complexes and our future work will focus on producing a one-pot C–H activation, catalytic in Ru.
Figure 1. Photolysis (365 nm, 9 W, d$_3$-MeCN, 298 K) over 6 h showing full conversion to the free arene 1d and [CpRu(d-NCMe)$_3$]$.^+$

Mechanistic Study

Two mechanisms have been proposed in the literature by which electron-deficient arenes may undergo concerted metalation-deprotonation C–H activation. Early reports suggested a Pd-mediated CMD process, with Ag(I) salts used as scavengers for liberated halides (see Supp. Info. Scheme S2).36 However, more recently, it has been demonstrated that Ag(I) may in fact be involved in the key CMD reaction step, followed by transmetalation of the activated [Ag]–arene to Pd.$^{52-54}$

Scheme 4 Ag-catalyzed H/D exchange experiment.
In an attempt to better understand the reaction mechanism by which our protocol is proceeding, we subjected complex 1a to the optimized reactions conditions in the absence of Pd(OAc)$_2$, but with addition of 10 equivalents of D$_2$O (Scheme 4). Under these conditions around 50% H/D exchange took place at the hydrogen in the ortho position to fluorine (see Supp. Info. Schemes S2 and S3). This provides strong evidence for a Ag-mediated C–H activation, consistent with the mechanism shown in Scheme 5. In additional control experiments, we omitted systematically each component of the reaction mixture. We found that absence of Pd or absence of Ag gives no reaction product or intermediates, with complete retention of starting material. Reactions will proceed slowly in the absence of 1-AdCO$_2$H, likely due to the presence of alternative sources of carboxylate (AcO$^-$, Ag$_2$CO$_3$). Overall, we reason that C–H activation occurs through a CMD mechanism and that Ag is indeed responsible for the initial C–H activation step.

Scheme 5 Proposed mechanism via concerted metalation-deprotonation (CMD) C–H activation.
CONCLUSION

Catalytic C–H activation leads to more efficiency and atom economical syntheses. The vast majority of reactions rely upon privileged substrates, incorporating activating groups. We report an exciting new C–H activation protocol, which overcomes these limitations, allowing formation of biaryls. Activation of the C–H bond is achieved through η⁶-coordination of arenes to [CpRu²⁺]. This is the first time that Ru complexes have been used to allow C–H activation by this mechanism. The Ru complex used to synthesise the η⁶-arene substrates can be recovered at the end of the reaction through photolysis in MeCN, thus highlighting the potential for a reaction overall catalytic in Ru, via an arene exchange mechanism. Furthermore, the simplest of arenes (benzene) will undergo C–H activation under the optimized reaction conditions.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest or competing financial interests.

ASSOCIATED CONTENT

Supporting Information is available and contains: experimental detail, full optimization data, mechanistic evaluation and photolysis experiments.

AUTHOR INFORMATION

Corresponding Author
*correspondence should be addressed to james.walton@durham.ac.uk

Funding Sources
We acknowledge funding support from EPSRC grant EP/N007441/1 and Durham University.

REFERENCES

