We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Scientific synergy between LSST and Euclid.

Rhodes, Jason and Nichol, Robert C. and Aubourg, Éric and Bean, Rachel and Boutigny, Dominique and Bremer, Malcolm N. and Capak, Peter and Cardone, Vincenzo and Carry, Benoît and Conselice, Christopher J. and Connolly, Andrew J. and Cuillandre, Jean-Charles and Hatch, N. A. and Helou, George and Hemmati, Shoubaneh and Hildebrandt, Hendrik and Hložek, Renée and Jones, Lynne and Kahn, Steven and Kiessling, Alina and Kitching, Thomas and Lupton, Robert and Mandelbaum, Rachel and Markovic, Katarina and Marshall, Phil and Massey, Richard and Maughan, Ben J. and Melchior, Peter and Mellier, Yannick and Newman, Jeffrey A. and Robertson, Brant and Sauvage, Marc and Schrabback, Tim and Smith, Graham P. and Strauss, Michael A. and Taylor, Andy and Linden, Anja Von Der (2017) 'Scientific synergy between LSST and Euclid.', Astrophysical journal supplement series., 233 (2). p. 21.


Euclid and the Large Synoptic Survey Telescope (LSST) are poised to dramatically change the astronomy landscape early in the next decade. The combination of high-cadence, deep, wide-field optical photometry from LSST with high-resolution, wide-field optical photometry, and near-infrared photometry and spectroscopy from Euclid will be powerful for addressing a wide range of astrophysical questions. We explore Euclid/LSST synergy, ignoring the political issues associated with data access to focus on the scientific, technical, and financial benefits of coordination. We focus primarily on dark energy cosmology, but also discuss galaxy evolution, transient objects, solar system science, and galaxy cluster studies. We concentrate on synergies that require coordination in cadence or survey overlap, or would benefit from pixel-level co-processing that is beyond the scope of what is currently planned, rather than scientific programs that could be accomplished only at the catalog level without coordination in data processing or survey strategies. We provide two quantitative examples of scientific synergies: the decrease in photo-z errors (benefiting many science cases) when high-resolution Euclid data are used for LSST photo-z determination, and the resulting increase in weak-lensing signal-to-noise ratio from smaller photo-z errors. We briefly discuss other areas of coordination, including high-performance computing resources and calibration data. Finally, we address concerns about the loss of independence and potential cross-checks between the two missions and the potential consequences of not collaborating.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2017. The American Astronomical Society. All rights reserved.
Date accepted:18 October 2017
Date deposited:05 January 2018
Date of first online publication:07 December 2017
Date first made open access:05 January 2018

Save or Share this output

Look up in GoogleScholar