Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The effect of thermal velocities on structure formation in N-body simulations of warm dark matter.

Leo, M. and Baugh, C.M. and Li, B. and Pascoli, S. (2017) 'The effect of thermal velocities on structure formation in N-body simulations of warm dark matter.', Journal of cosmology and astroparticle physics., 2017 (11). 017.

Abstract

We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(3438Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1088/1475-7516/2017/11/017
Date accepted:23 October 2017
Date deposited:17 January 2018
Date of first online publication:13 November 2017
Date first made open access:13 November 2018

Save or Share this output

Export:
Export
Look up in GoogleScholar