We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Quantifying the impact of mergers on the angular momentum of simulated galaxies.

Lagos, C. d. P. and Stevens, A. R. H. and Bower, R. G. and Davis, T. A. and Contreras, S. and Padilla, N. D. and Obreschkow, D. and Croton, D. and Trayford, J. W. and Welker, C. and Theuns, T. (2018) 'Quantifying the impact of mergers on the angular momentum of simulated galaxies.', Monthly notices of the Royal Astronomical Society., 473 (4). pp. 4956-4974.


We use EAGLE to quantify the effect galaxy mergers have on the stellar specific angular momentum of galaxies, jstars. We split mergers into dry (gas-poor)/wet (gas-rich), major/minor and different spin alignments and orbital parameters. Wet (dry) mergers have an average neutral gas-to-stellar mass ratio of 1.1 (0.02), while major (minor) mergers are those with stellar mass ratios ≥0.3 (0.1–0.3). We correlate the positions of galaxies in the jstars–stellar mass plane at z = 0 with their merger history, and find that galaxies of low spins suffered dry mergers, while galaxies of normal/high spins suffered predominantly wet mergers, if any. The radial jstars profiles of galaxies that went through dry mergers are deficient by ≈0.3 dex at r ≲ 10 r50 (with r50 being the half-stellar mass radius), compared to galaxies that went through wet mergers. Studying the merger remnants reveals that dry mergers reduce jstars by ≈30 per cent, while wet mergers increase it by ≈10 per cent, on average. The latter is connected to the build-up of the bulge by newly formed stars of high rotational speed. Moving from minor to major mergers accentuates these effects. When the spin vectors of the galaxies prior to the dry merger are misaligned, jstars decreases by a greater magnitude, while in wet mergers corotation and high orbital angular momentum efficiently spun-up galaxies. We predict what would be the observational signatures in the jstars profiles driven by dry mergers: (i) shallow radial profiles and (ii) profiles that rise beyond ≈10 r50, both of which are significantly different from spiral galaxies.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Date accepted:06 October 2017
Date deposited:17 January 2018
Date of first online publication:14 October 2017
Date first made open access:17 January 2018

Save or Share this output

Look up in GoogleScholar