Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The formation of hot gaseous haloes around galaxies.

Correa, C. A. and Schaye, J. and Wyithe, J. S. B. and Duffy, A. R. and Theuns, T. and Crain, R. A. and Bower, R. G. (2018) 'The formation of hot gaseous haloes around galaxies.', Monthly notices of the Royal Astronomical Society., 473 (1). pp. 538-559.

Abstract

We use a suite of hydrodynamical cosmological simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project to investigate the formation of hot hydrostatic haloes and their dependence on feedback mechanisms. We find that the appearance of a strong bimodality in the probability density function of the ratio of the radiative cooling and dynamical times for halo gas provides a clear signature of the formation of a hot corona. Haloes of total mass 1011.5–1012 M⊙ develop a hot corona independent of redshift, at least in the interval z = 0–4, where the simulation has sufficiently good statistics. We analyse the build-up of the hot gas mass in the halo, Mhot, as a function of halo mass and redshift and find that while more energetic galactic wind powered by SNe increases Mhot, active galactic nucleus feedback reduces it by ejecting gas from the halo. We also study the thermal properties of gas accreting on to haloes and measure the fraction of shock-heated gas as a function of redshift and halo mass. We develop analytic and semi-analytic approaches to estimate a ‘critical halo mass’, Mcrit, for hot halo formation. We find that the mass for which the heating rate produced by accretion shocks equals the radiative cooling rate reproduces the mass above which haloes develop a significant hot atmosphere. This yields a mass estimate of Mcrit ≈ 1011.7 M⊙ at z = 0, which agrees with the simulation results. The value of Mcrit depends more strongly on the cooling rate than on any of the feedback parameters.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
(2363Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1093/mnras/stx2332
Publisher statement:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Date accepted:06 September 2017
Date deposited:17 January 2018
Date of first online publication:09 September 2017
Date first made open access:17 January 2018

Save or Share this output

Export:
Export
Look up in GoogleScholar