We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Tritrophic phenological match-mismatch in space and time.

Burgess, Malcolm D. and Smith, Ken W. and Evans, Karl L. and Leech, Dave and Pearce-Higgins, James W. and Branston, Claire J. and Briggs, Kevin and Clark, John R. and du Feu, Chris R. and Lewthwaite, Kate and Nager, Ruedi G. and Sheldon, Ben C. and Smith, Jeremy A. and Whytock, Robin C. and Willis, Stephen G. and Phillimore, Albert B. (2018) 'Tritrophic phenological match-mismatch in space and time.', Nature ecology and evolution., 2 . pp. 970-975.


Increasing temperatures associated with climate change may generate phenological mismatches that disrupt previously synchronous trophic interactions. Most work on mismatch has focused on temporal trends, whereas spatial variation in the degree of trophic synchrony has largely been neglected, even though the degree to which mismatch varies in space has implications for meso-scale population dynamics and evolution. Here we quantify latitudinal trends in phenological mismatch, using phenological data on an oak–caterpillar–bird system from across the UK. Increasing latitude delays phenology of all species, but more so for oak, resulting in a shorter interval between leaf emergence and peak caterpillar biomass at northern locations. Asynchrony found between peak caterpillar biomass and peak nestling demand of blue tits, great tits and pied flycatchers increases in earlier (warm) springs. There is no evidence of spatial variation in the timing of peak nestling demand relative to peak caterpillar biomass for any species. Phenological mismatch alone is thus unlikely to explain spatial variation in population trends. Given projections of continued spring warming, we predict that temperate forest birds will become increasingly mismatched with peak caterpillar timing. Latitudinal invariance in the direction of mismatch may act as a double-edged sword that presents no opportunities for spatial buffering from the effects of mismatch on population size, but generates spatially consistent directional selection on timing, which could facilitate rapid evolutionary change.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:22 March 2018
Date deposited:23 March 2018
Date of first online publication:23 April 2018
Date first made open access:23 October 2018

Save or Share this output

Look up in GoogleScholar