Skip to main content

Research Repository

Advanced Search

Effects of Ortho-Phenyl Substitution on the rISC Rate of D–A Type TADF Molecules

Higginbotham, Heather F.; Yi, Chih-Lun; Monkman, Andrew P.; Wong, Ken-Tsung

Effects of Ortho-Phenyl Substitution on the rISC Rate of D–A Type TADF Molecules Thumbnail


Authors

Heather F. Higginbotham

Chih-Lun Yi

Ken-Tsung Wong



Abstract

Two new donor (D)–acceptor (A) type molecules, PXZ-DBTO2 and PXZ-Ph-DBTO2, configured with phenoxazine donor and dibenzothiophene-S,S-dioxide acceptor are reported. PXZ-Ph-DBTO2, with a phenyl group introduced at the ortho position of PXZ, was used to probe the effects of the congested aryl substitution on the molecular conformation and electronic coupling toward the acceptor core, as well as the thermally activated delayed fluorescence behavior. The highly twisted donor–acceptor configurations of these two molecules were confirmed by X-ray analysis. Different D–A conformations stemmed from the steric interactions between the phenyl group and acceptor core, which leads the nitrogen lone pair electrons of the PXZ-Ph-DBTO2 donor to conjugate across the D–A bridge, whereas in PXZ-DBTO2 the lone pairs remain localized on the donor and strongly mix with the donor π electrons. However, both PXZ-Ph-DBTO2 and PXZ-DBTO2 have the same energy splitting between the charge-transfer states and local donor triplet states, ΔEST, close to 70 meV. PXZ-DBTO2 exhibits a far more efficient thermally activated delayed fluorescence due to nearly 2 orders of magnitude faster reverse intersystem crossing rate as compared to that of PXZ-Ph-DBTO2. Detailed photophysical analysis of both molecules indicates that the presence of the phenyl group on the donor disrupts the π–π*/n−π* orbital mixing across the N–C bridge that plays a fundamental role in the excited state dynamics and vibronic coupling governing the reverse intersystem crossing rate and thus the efficiency of thermally activated delayed fluorescence. Devices employing PXZ-DBTO2 as an emitting dopant gave an external quantum efficiency (EQE) of 16.7% (42 cd m–2) and a limited efficiency roll-off (15.7% at 1000 cd m–2), whereas the device based on PXZ-Ph-DBTO2 produced a maximum EQE up to 20.6%, but with a significant efficiency roll-off (8.8% at 1000 cd m–2) ascribed to the much faster reverse intersystem crossing rate of PXZ-DBTO2.

Citation

Higginbotham, H. F., Yi, C., Monkman, A. P., & Wong, K. (2018). Effects of Ortho-Phenyl Substitution on the rISC Rate of D–A Type TADF Molecules. Journal of Physical Chemistry C, 122(14), 7627-7634. https://doi.org/10.1021/acs.jpcc.8b01579

Journal Article Type Article
Acceptance Date Mar 25, 2018
Online Publication Date Mar 26, 2018
Publication Date Mar 26, 2018
Deposit Date May 4, 2018
Publicly Available Date Mar 26, 2019
Journal Journal of Physical Chemistry C
Print ISSN 1932-7447
Electronic ISSN 1932-7455
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
Volume 122
Issue 14
Pages 7627-7634
DOI https://doi.org/10.1021/acs.jpcc.8b01579

Files

Accepted Journal Article (1.3 Mb)
PDF

Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of physical chemistry C copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpcc.8b01579





You might also like



Downloadable Citations