We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Effects of ortho-phenyl substitution on the rISC rate of D–A type TADF molecules.

Higginbotham, Heather F. and Yi, Chih-Lun and Monkman, Andrew P. and Wong, Ken-Tsung (2018) 'Effects of ortho-phenyl substitution on the rISC rate of D–A type TADF molecules.', Journal of physical chemistry C., 122 (14). pp. 7627-7634.


Two new donor (D)–acceptor (A) type molecules, PXZ-DBTO2 and PXZ-Ph-DBTO2, configured with phenoxazine donor and dibenzothiophene-S,S-dioxide acceptor are reported. PXZ-Ph-DBTO2, with a phenyl group introduced at the ortho position of PXZ, was used to probe the effects of the congested aryl substitution on the molecular conformation and electronic coupling toward the acceptor core, as well as the thermally activated delayed fluorescence behavior. The highly twisted donor–acceptor configurations of these two molecules were confirmed by X-ray analysis. Different D–A conformations stemmed from the steric interactions between the phenyl group and acceptor core, which leads the nitrogen lone pair electrons of the PXZ-Ph-DBTO2 donor to conjugate across the D–A bridge, whereas in PXZ-DBTO2 the lone pairs remain localized on the donor and strongly mix with the donor π electrons. However, both PXZ-Ph-DBTO2 and PXZ-DBTO2 have the same energy splitting between the charge-transfer states and local donor triplet states, ΔEST, close to 70 meV. PXZ-DBTO2 exhibits a far more efficient thermally activated delayed fluorescence due to nearly 2 orders of magnitude faster reverse intersystem crossing rate as compared to that of PXZ-Ph-DBTO2. Detailed photophysical analysis of both molecules indicates that the presence of the phenyl group on the donor disrupts the π–π*/n−π* orbital mixing across the N–C bridge that plays a fundamental role in the excited state dynamics and vibronic coupling governing the reverse intersystem crossing rate and thus the efficiency of thermally activated delayed fluorescence. Devices employing PXZ-DBTO2 as an emitting dopant gave an external quantum efficiency (EQE) of 16.7% (42 cd m–2) and a limited efficiency roll-off (15.7% at 1000 cd m–2), whereas the device based on PXZ-Ph-DBTO2 produced a maximum EQE up to 20.6%, but with a significant efficiency roll-off (8.8% at 1000 cd m–2) ascribed to the much faster reverse intersystem crossing rate of PXZ-DBTO2.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Publisher statement:This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of physical chemistry C copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see
Date accepted:25 March 2018
Date deposited:04 May 2018
Date of first online publication:26 March 2018
Date first made open access:26 March 2019

Save or Share this output

Look up in GoogleScholar