We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Highly siderophile elements mobility in the subcontinental lithospheric mantle beneath southern Patagonia.

Tassara, Santiago and González-Jiménez, José M. and Reich, Martin and Saunders, Edward and Luguet, Ambre and Morata, Diego and Grégoire, Michel and van Acken, David and Schilling, Manuel E. and Barra, Fernando and Nowell, Geoff and Corgne, Alexandre (2018) 'Highly siderophile elements mobility in the subcontinental lithospheric mantle beneath southern Patagonia.', Lithos., 314-315 . pp. 579-596.


Peridotite xenoliths collected from alkali basalts in the Argentinian Patagonia reveal the existence of an ancient depleted Paleoproterozoic mantle that records a subsequent multistage metasomatic history. Metasomatism is associated with carbonatite-like melts that evolved, after variable melt/rock ratio interaction, towards CO2-rich and Na-bearing Mg-rich (mafic) silicate, and volatile-rich alkali silicate melts. High degrees of partial melting produced strongly depleted mantle domains devoid of base-metal sulphides (BMS). Moderate degrees of partial melting and later unrelated metasomatism produced a range of slightly depleted, slightly enriched, and strongly enriched mantle domains that preserve different types of BMS. Thus, six different BMS populations were identified including typical residual Type 1A BMS enriched in Os, Ir, and Ru relative to Pt, Pd, and Au located within primary olivine and clinopyroxene, and metasomatic Type 2A BMS that are relatively enriched in Pt, Pd, Au occurring as interstitial grains. Reworking of these two types of BMS by later metasomatism resulted in the formation of a new generation of BMS (Type 1B and Type 2B) that are intimately associated with carbonate/apatite blebs and/or empty vesicles, as well as with cryptically metasomatised or metasomatic clinopyroxene. These newly formed BMS were re-enriched in Os, Pd, Au, Re and in semi-metal elements (As, Se, Sb, Bi, Te) compared to their Type 1A and Type 2A precursors. A third generation of BMS corresponds to NiCu immiscible sulphide mattes entrained within Na-bearing silica under-saturated alkali melt. They occur systematically related to intergranular glass veins and exhibit distinctively near flat CI-chondrite normalised highly siderophile element patterns with either positive Pd (Type 3A) or negative Pt (Type 3B) anomalies. Our findings indicate that Os, Pd, Re and Au can be selectively transported by volatile-rich alkali silicate melts in the subcontinental lithospheric mantle. Moreover, the transport of sulphide mattes entrained in silicate melts is also an effective mechanism to produce HSE endowment in the SCLM and play an important role as precursors of fertile, metal-rich magmas that form ore deposits in the overlying crust.

Item Type:Article
Full text:Publisher-imposed embargo
(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
File format - PDF
Publisher Web site:
Publisher statement:© 2018 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:24 June 2018
Date deposited:10 July 2018
Date of first online publication:05 July 2018
Date first made open access:05 July 2019

Save or Share this output

Look up in GoogleScholar