We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia.

Frith, N. and Hilton, R.G. and Howarth, J.D. and Gröcke, D.R. and Fitzsimons, S.J. and Croissant, T. and Wang, J. and McClymont, E.L. and Dahl, J. and Densmore, A.L. (2018) 'Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia.', Nature geoscience., 11 (10). pp. 772-776.


Rapid ground accelerations during earthquakes can trigger landslides that disturb mountain forests and harvest carbon from soils and vegetation. Although infrequent over human timescales, these co-seismic landslides can set the rates of geomorphic processes over centuries to millennia. However, the long-term impacts of earthquakes and landslides on carbon export from the biosphere remain poorly constrained. Here, we examine the sedimentary fill of Lake Paringa, New Zealand, which is fed by a river draining steep mountains proximal to the Alpine Fault. Carbon isotopes reveal enhanced accumulation rates of biospheric carbon after four large earthquakes over the past ~1,100 years, probably reflecting delivery of soil-derived carbon eroded by deep-seated landslides. Cumulatively these pulses of earthquake-mobilized carbon represent 23 ± 5% of the record length, but account for 43 ± 5% of the biospheric carbon in the core. Landslide simulations suggest that 14 ± 5 million tonnes of carbon (MtC) could be eroded in each earthquake. Our findings support a link between active tectonics and the surface carbon cycle and suggest that large earthquakes can significantly contribute to carbon export from mountain forests over millennia.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:26 July 2018
Date deposited:13 August 2018
Date of first online publication:27 August 2018
Date first made open access:27 February 2019

Save or Share this output

Look up in GoogleScholar