We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

A Monte Carlo approach to the 4D scattering equations.

Farrow, Joseph A. (2018) 'A Monte Carlo approach to the 4D scattering equations.', Journal of high energy physics., 2018 (8). 085.


The scattering equation formalism is a general framework for calculation of amplitudes in theories of massless particles. We provide a detailed introduction to the 4D scattering equation framework accessible to non-experts, outline current difficulties solving the equations numerically, and explain how to overcome them with a Monte Carlo algorithm. With this submission we include treeamps4dJAF, the first publicly available Mathematica package for calculating amplitudes by solving the scattering equations, supporting MHV analytical and Nk − 2MHV numerical computations. The package provides a powerful and flexible computational tool for calculating tree-level amplitudes in super Yang Mills theories, Einstein supergravity and conformal supergravity. We tabulate sets of numerical solutions up to 9 points in all MHV sectors and 12 points in the NHMV sector which can be used for fast evaluation of amplitudes.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Date accepted:05 August 2018
Date deposited:22 August 2018
Date of first online publication:14 August 2018
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar