Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The wider context of the Lower Jurassic Toarcian oceanic anoxic event in Yorkshire coastal outcrops, UK.

Thibault, Nicolas and Ruhl, Micha and Ullmann, Clemens V. and Korte, Christoph and Kemp, David B. and Gröcke, Darren R. and Hesselbo, Stephen P. (2018) 'The wider context of the Lower Jurassic Toarcian oceanic anoxic event in Yorkshire coastal outcrops, UK.', Proceedings of the Geologists’ Association., 129 (3). pp. 372-391.

Abstract

The Toarcian Oceanic Anoxic Event (T-OAE, ∼183 Ma) was characterized by enhanced carbon burial, a prominent negative carbon-isotope excursion (CIE) in marine carbonate and organic matter, and numerous geochemical anomalies. A precursor excursion has also been documented at the Pliensbachian/Toarcian boundary, but its possible causes are less constrained. The T-OAE is intensively studied in the Cleveland Basin, Yorkshire, UK, whose sedimentary deposits have been litho-, bio- and chemostratigraphically characterised. Here, we present new elemental data produced by hand-held X-ray fluorescence analysis to test the expression of redox-sensitive trace metals and detrital elements across the upper Pliensbachian to mid-Toarcian of the Cleveland Basin. Detrital elemental concentrations (Al, Si, Ti, Zr) are used as proxies for siliciclastic grain content and thus, sea-level change, which match previous sequence stratigraphic interpretations from the Cleveland Basin. The timescale of the event is debated, though our new elemental proxies of relative sea level change show evidence for a cyclicity of 350 cm that may be indicative of ∼405 kyr eccentricity cycles in Yorkshire. Trends in total organic carbon and redox-sensitive elements (S, Fe, Mo, As) confirm scenarios of widespread ocean deoxygenation across the T-OAE. The correlation of comparable trends in Mo across the T-OAE in Yorkshire and the Paris Basin suggests a similar oceanic drawdown of this element accompanying widespread anoxia in the two basins. Data from Yorkshire point to a transgressive trend at the time of the Mo drawdown, which contradicts the “basin restriction” model for the euxinic conditions that characterise the CIE interval.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
(1456Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.pgeola.2017.10.007
Publisher statement:© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Date accepted:24 October 2017
Date deposited:05 October 2018
Date of first online publication:13 December 2017
Date first made open access:13 December 2018

Save or Share this output

Export:
Export
Look up in GoogleScholar