We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Sliding window temporal graph coloring.

Mertzios, G.B. and Molter, H. and Zamaraev, V. (2019) 'Sliding window temporal graph coloring.', in Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Palo Alto, California: AAAI Press, pp. 7667-7674.


Graph coloring is one of the most famous computational problems with applications in a wide range of areas such as planning and scheduling, resource allocation, and pattern matching. So far coloring problems are mostly studied on static graphs, which often stand in stark contrast to practice where data is inherently dynamic and subject to discrete changes over time. A temporal graph is a graph whose edges are assigned a set of integer time labels, indicating at which discrete time steps the edge is active. In this paper we present a natural temporal extension of the classical graph coloring problem. Given a temporal graph and a natural number ∆, we ask for a coloring sequence for each vertex such that (i) in every sliding time window of ∆ consecutive time steps, in which an edge is active, this edge is properly colored (i.e. its endpoints are assigned two different colors) at least once during that time window, and (ii) the total number of different colors is minimized. This sliding window temporal coloring problem abstractly captures many realistic graph coloring scenarios in which the underlying network changes over time, such as dynamically assigning communication channels to moving agents. We present a thorough investigation of the computational complexity of this temporal coloring problem. More specifically, we prove strong computational hardness results, complemented by efficient exact and approximation algorithms. Some of our algorithms are linear-time fixed-parameter tractable with respect to appropriate parameters, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH).

Item Type:Book chapter
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:31 October 2018
Date deposited:15 November 2018
Date of first online publication:17 July 2019
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar