Skip to main content

Research Repository

Advanced Search

Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction

Cortés-Ortuño, David; Beg, Marijan; Nehruji, Vanessa; Breth, Leoni; Pepper, Ryan; Kluyver, Thomas; Downing, Gary; Hesjedal, Thorsten; Hatton, Peter; Lancaster, Tom; Hertel, Riccardo; Hovorka, Ondrej; Fangohr, Hans

Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction Thumbnail


Authors

David Cortés-Ortuño

Marijan Beg

Vanessa Nehruji

Leoni Breth

Ryan Pepper

Thomas Kluyver

Gary Downing

Thorsten Hesjedal

Peter Hatton

Riccardo Hertel

Ondrej Hovorka

Hans Fangohr



Abstract

Understanding the role of the Dzyaloshinskii–Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising Néel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without the DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.

Citation

Cortés-Ortuño, D., Beg, M., Nehruji, V., Breth, L., Pepper, R., Kluyver, T., …Fangohr, H. (2018). Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction. New Journal of Physics, 20(11), Article 113015. https://doi.org/10.1088/1367-2630/aaea1c

Journal Article Type Article
Acceptance Date Oct 22, 2018
Online Publication Date Nov 13, 2018
Publication Date Nov 13, 2018
Deposit Date Nov 14, 2018
Publicly Available Date Mar 28, 2024
Journal New Journal of Physics
Publisher IOP Publishing
Peer Reviewed Peer Reviewed
Volume 20
Issue 11
Article Number 113015
DOI https://doi.org/10.1088/1367-2630/aaea1c
Related Public URLs https://arxiv.org/abs/1803.11174

Files

Published Journal Article (1.2 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.





You might also like



Downloadable Citations