Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Mismatch and misalignment : dark haloes and satellites of disc galaxies.

Deason, A.J. and McCarthy, I.G. and Font, A.S. and Evans, N.W. and Frenk, C.S. and Belokurov, V. and Libeskind, N.I. and Crain, R.A. and Theuns, T. (2011) 'Mismatch and misalignment : dark haloes and satellites of disc galaxies.', Monthly notices of the Royal Astronomical Society., 415 (3). pp. 2607-2625.

Abstract

We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r∼ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r∼r200). Misalignments of >45° are seen in ∼30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy – an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (∼10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation – the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo mass from the line-of-sight velocities and projected positions of satellite galaxies. We quantify the effects of such systematics in estimates of the host halo mass from the satellite population.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
(1067Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1111/j.1365-2966.2011.18884.x
Publisher statement:© 2011 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Date accepted:08 April 2011
Date deposited:25 January 2019
Date of first online publication:02 August 2011
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar