We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Learning inexpensive parametric design models using an augmented genetic programming technique.

Matthews, P. C. and Standingford, D. W. F. and Holden, C. M. E. and Wallace, K. M. (2006) 'Learning inexpensive parametric design models using an augmented genetic programming technique.', Artificial intelligence for engineering design, analysis and manufacturing., 20 (1). pp. 1-18.


Previous applications of Genetic Programming (GP) have been restricted to searching for algebraic approximations mapping the design parameters (e.g. geometrical parameters) to a single design objective (e.g. weight). In addition, these algebraic expressions tend to be highly complex. By adding a simple extension to the GP technique, a powerful design data analysis tool is developed. This paper significantly extends the analysis capabilities of GP by searching for multiple simple models within a single population by splitting the population into multiple islands according to the design variables used by individual members. Where members from different islands `cooperate', simple design models can be extracted from this cooperation. This relatively simple extension to GP is shown to have powerful implications to extracting design models that can be readily interpreted and exploited by human designers. The full analysis method, GP-HEM (Genetic Programming Heuristics Extraction Method), is described and illustrated by means of a design case study.

Item Type:Article
Keywords:Genetic programming, Knowledge elicitation, Design model induction, Meta-models, Data mining.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This paper has been published by Cambridge University Press in " Artificial intelligence for engineering design, analysis and manufacturing" (20: 1 (2006) 1-18)
Date accepted:No date available
Date deposited:09 March 2010
Date of first online publication:January 2006
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar