We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

COLDz : shape of the CO luminosity function at high redshift and the cold gas history of the Universe.

Riechers, Dominik A. and Pavesi, Riccardo and Sharon, Chelsea E. and Hodge, Jacqueline A. and Decarli, Roberto and Walter, Fabian and Carilli, Christopher L. and Aravena, Manuel and da Cunha, Elisabete and Daddi, Emanuele and Dickinson, Mark and Smail, Ian and Capak, Peter L. and Ivison, Rob J. and Sargent, Mark and Scoville, Nicholas Z. and Wagg, Jeff (2019) 'COLDz : shape of the CO luminosity function at high redshift and the cold gas history of the Universe.', Astrophysical journal, 872 (1). p. 7.


We report the first detailed measurement of the shape of the CO luminosity function at high redshift, based on >320 hr of the NSF's Karl G. Jansky Very Large Array (VLA) observations over an area of ~60 arcmin2 taken as part of the CO Luminosity Density at High Redshift (COLDz) survey. COLDz "blindly" selects galaxies based on their cold gas content through CO(J = 1 → 0) emission at z ~ 2–3 and CO(J = 2 → 1) at z ~ 5–7 down to a CO luminosity limit of log(${L}_{\mathrm{CO}}^{{\prime} }$/K km s−1 pc2) sime 9.5. We find that the characteristic luminosity and bright end of the CO luminosity function are substantially higher than predicted by semi-analytical models, but consistent with empirical estimates based on the infrared luminosity function at z ~ 2. We also present the currently most reliable measurement of the cosmic density of cold gas in galaxies at early epochs, i.e., the cold gas history of the universe, as determined over a large cosmic volume of ~375,000 Mpc3. Our measurements are in agreement with an increase of the cold gas density from z ~ 0 to z ~ 2–3, followed by a possible decline toward z ~ 5–7. These findings are consistent with recent surveys based on higher-J CO line measurements, upon which COLDz improves in terms of statistical uncertainties by probing ~50–100 times larger areas and in the reliability of total gas mass estimates by probing the low-J CO lines accessible to the VLA. Our results thus appear to suggest that the cosmic star formation rate density follows an increased cold molecular gas content in galaxies toward its peak about 10 billion years ago, and that its decline toward the earliest epochs is likely related to a lower overall amount of cold molecular gas (as traced by CO) bound in galaxies toward the first billion years after the Big Bang.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2019. The American Astronomical Society. All rights reserved.
Date accepted:04 January 2019
Date deposited:20 February 2019
Date of first online publication:06 February 2019
Date first made open access:20 February 2019

Save or Share this output

Look up in GoogleScholar