Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Advance and retreat of the marine-terminating Irish Sea Ice Stream into the Celtic Sea during the last glacial : timing and maximum extent.

Scourse, James and Saher, Margot and Van Landeghem, Katrien J.J. and Lockhart, Edward and Purcell, Catriona and Callard, Louise and Roseby, Zoe and Allinson, Ben and Pieńkowski, Anna J. and Ó Cofaigh, Colm and Praeg, Daniel and Ward, Sophie and Chiverrell, Richard and Moreton, Steve and Fabel, Derek and Clark, Chris D. (2019) 'Advance and retreat of the marine-terminating Irish Sea Ice Stream into the Celtic Sea during the last glacial : timing and maximum extent.', Marine geology., 412 . pp. 53-68.

Abstract

The dynamics of the British-Irish Ice Sheet (BIIS) during the Last Glacial were conditioned by marine-based ice streams, the largest of which by far was the Irish Sea Ice Stream (ISIS) which drained southwest across the Celtic shelf. The maximum extent and timing of the ISIS have been constrained by onshore evidence from the UK and Ireland, and by glacigenic sediments encountered in a small suite of vibrocores from the UK-Irish continental shelf, from which a single radiocarbon date is available. These data have long supported ice advance to at least the mid-shelf, while recent results suggest the ISIS may have extended 150 km farther seaward to the shelf edge. The glacigenic sequences have not been placed within a secure seismic-stratigraphic context and the relationship between glaciation and the linear sediment megaridges observed on the outer shelf of the Celtic Sea has remained uncertain. Here we report results of sedimentological, geochemical, geochronological and micropalaeontological analyses combined with a seismic-stratigraphic investigation of the glacigenic sequences of the Celtic Sea with the aims of establishing maximum extent, depositional context, timing and retreat chronology of ISIS. Eight lithofacies packages are identified, six of which correlate with seismic facies. Lithofacies LF1 and LF2 correlate to a seafloor seismic facies (SF1) that we interpret to record the postglacial and Holocene transgressive flooding of the shelf. Lithofacies LF10 (till), LF3, LF4 and LF8 (glacimarine) correlate to different seismic facies that we interpret to be of glacigenic origin based on sedimentological, geotechnical and micropalaeontological evidence, and their distribution, supported by geochemical evidence from lithofacies LF8 and LF10 indicate extension of ISIS as far as the Celtic Sea shelf break. New radiocarbon ages on calcareous micro- and macrofauana constrain this advance to be between 24 and 27 cal ka BP, consistent with pre-existing geochronological constraints. Glacimarine lithofacies LF8 is in places glacitectonically contorted and deformed, indicating ice readvance, but the nature and timing of this readvance is unclear. Retreat out of the Celtic Sea was initially rapid and may have been triggered by high relative sea-levels driven by significant glacio-isostatic depression, consistent with greater ice loads over Britain and Ireland than previously considered.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
(5587Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.margeo.2019.03.003
Publisher statement:This article is available under the terms of the Creative Commons Attribution License (CC BY). You may copy and distribute the article, create extracts, abstracts and new works from the article, alter and revise the article, text or data mine the article and otherwise reuse the article commercially (including reuse and/or resale of the article) without permission from Elsevier. You must give appropriate credit to the original work, together with a link to the formal publication through the relevant DOI and a link to the Creative Commons user license above. You must indicate if any changes are made but not in any way that suggests the licensor endorses you or your use of the work.
Date accepted:13 March 2019
Date deposited:09 July 2019
Date of first online publication:16 March 2019
Date first made open access:27 September 2021

Save or Share this output

Export:
Export
Look up in GoogleScholar