Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The dynamics and distribution of angular momentum in HiZELS star – forming galaxies at z = 0.8 – 3.3.

Gillman, S. and Swinbank, A.M. and Tiley, A.L. and Harrison, C.M. and Smail, Ian and Dudzevičiūtė, U. and Sharples, R.M. and Best, P.N. and Bower, R.G. and Cochrane, R. and Fisher, D. and Geach, J.E. and Glazebrook, K. and Ibar, Edo and Molina, J. and Obreschkow, D. and Schaller, M. and Sobral, D. and Sweet, S. and Trayford, J.W. and Theuns, T. (2019) 'The dynamics and distribution of angular momentum in HiZELS star – forming galaxies at z = 0.8 – 3.3.', Monthly notices of the Royal Astronomical Society., 486 (1). pp. 175-194.

Abstract

We present adaptive optics assisted integral field spectroscopy of 34 star–forming galaxies at z = 0.8–3.3 selected from the HiZELS narrow-band survey. We measure the kinematics of the ionised interstellar medium on ∼1 kpc scales, and show that the galaxies are turbulent, with a median ratio of rotational to dispersion support of V / σ = 0.82 ± 0.13. We combine the dynamics with high-resolution rest-frame optical imaging and extract emission line rotation curves. We show that high-redshift star forming galaxies follow a similar power-law trend in specific angular momentum with stellar mass as that of local late type galaxies. We exploit the high resolution of our data and examine the radial distribution of angular momentum within each galaxy by constructing total angular momentum profiles. Although the stellar mass of a typical star-forming galaxy is expected to grow by a factor ∼ 8 in the ∼5 Gyrs between z ∼ 3.3 and z ∼ 0.8, we show that the internal distribution of angular momentum becomes less centrally concentrated in this period i.e the angular momentum grows outwards. To interpret our observations, we exploit the EAGLE simulation and trace the angular momentum evolution of star forming galaxies from z ∼ 3 to z ∼ 0, identifying a similar trend of decreasing angular momentum concentration. This change is attributed to a combination of gas accretion in the outer disk, and feedback that preferentially arises from the central regions of the galaxy. We discuss how the combination of the growing bulge and angular momentum stabilises the disk and gives rise to the Hubble sequence.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(3377Kb)
Full text:(VoR) Version of Record
Download PDF
(6928Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1093/mnras/stz765
Publisher statement:© 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.
Date accepted:07 March 2019
Date deposited:26 March 2019
Date of first online publication:15 March 2019
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar