Skip to main content

Research Repository

Advanced Search

Fan‐surface evidence for debris‐flow avulsion controls and probabilities, Saline Valley, California

Haas, T.; Densmore, A.L.; Hond, T.; Cox, N.J.

Fan‐surface evidence for debris‐flow avulsion controls and probabilities, Saline Valley, California Thumbnail


Authors

T. Haas

T. Hond



Abstract

Debris‐flow fans form by shifts of the active channel, termed avulsions. Field and experimental evidence suggest that debris‐flow avulsions may be induced by depositional lobes that locally plug a channel or super‐elevation of the channel bed above the surrounding fan surface, by analogy to fluvial fans. To understand debris‐flow avulsion processes, we differentiate between these controls by quantifying the spatial distribution of debris‐flow lobe and channel dimensions, along with channel‐bed super‐elevation, on nine debris‐flow fans in Saline Valley, California, USA. Channel beds are generally super‐elevated by 2‐5 channel depths above the fan surface, and locally by more than 7 channel depths, thereby substantially exceeding super‐elevation on fluvial fans. Depositional‐lobe thickness and channel depth decrease with distance from the fan apex, although both are highly variable across the fans. Median channel depths roughly correspond to the 50‐75th percentiles of lobe thicknesses, while minimum channel depths roughly correspond to the 10‐25th percentiles. In contrast, the thicknesses of lobes that have triggered avulsions roughly equal local channel depths and are on average twice as thick as the local median lobe thickness. The spatial correspondence between avulsion locations and thick lobe deposits, and the lack of correlation with channel‐bed super‐elevation, leads us to infer that avulsions on these fans are mostly caused by thick lobes forming channel plugs. Although results may vary with climatic and tectonic setting, our findings indicate that avulsion hazard assessment on populated fans should include mapping and monitoring of channel depths relative to typical deposit thicknesses on a given fan.

Citation

Haas, T., Densmore, A., Hond, T., & Cox, N. (2019). Fan‐surface evidence for debris‐flow avulsion controls and probabilities, Saline Valley, California. Journal of Geophysical Research: Earth Surface, 124(5), 1118-1138. https://doi.org/10.1029/2018jf004815

Journal Article Type Article
Acceptance Date Mar 30, 2019
Online Publication Date May 7, 2019
Publication Date Apr 4, 2019
Deposit Date Apr 9, 2019
Publicly Available Date Jun 25, 2019
Journal Journal of geophysical research. Earth surface.
Print ISSN 2169-9011
Electronic ISSN 2169-9011
Publisher American Geophysical Union
Peer Reviewed Peer Reviewed
Volume 124
Issue 5
Pages 1118-1138
DOI https://doi.org/10.1029/2018jf004815

Files






You might also like



Downloadable Citations