Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.

Dao, Cuong D. and Kazemtabrizi, Behzad and Crabtree, Christopher J. (2019) 'Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.', in Conference Proceedings: ASME 38th International Conference on Ocean, Offshore & Arctic Engineering. , OMAE2019-95561, V003T02A072.

Abstract

Wind energy is growing at a fast pace around the world. According to a report published by WindEurope, 55% of total power capacity installations in the EU came from wind in 2017. In this context, offshore wind plays a decisive role, with countries such as the UK leading the development of large-scale offshore wind projects within Europe and around the world. It is essential that the cost of energy from offshore wind remains competitive with other sources of energy to encourage further investment in offshore wind developments. One way to maintain and further reduce the cost of offshore wind energy is to take advantage of economies of scale by increasing the megawatt ratings of offshore wind turbines. On the other hand, the operational expenditure of the turbines could also be reduced significantly. In this paper, we present a new integrated operation simulation framework for performance evaluation of multi-megawatt direct drive wind turbines suitable for use in far offshore wind farms. The operation simulation considers several essential wind turbine data such as component reliability, i.e. failure rates and downtimes per failure, historical wind speed, turbine information, and repair cost per failure to estimate the operational and economic performance of the wind turbine in its entire lifetime. In the proposed operation simulation, component reliability models and a wind power model are coupled together to simulate wind turbine operation over its entire lifetime using a time-sequential Monte Carlo simulation. Since the reliability data for large-scale offshore wind turbines are scarce and/or restricted to only direct stakeholders, a range of operational profiles for the turbines based on different level of reliability are simulated. In addition, the economic performance of the turbine is measured by defining an index for levelised cost of energy as a function of component reliability. In this way, the wind turbine reliability, power output, failure cost and levelised cost of energy are estimated under the variation of input reliability data. The results of this paper can inform wind turbine performance depending on the reliability of its components, and provide useful information for critical components identification and economic assessment of future far offshore wind turbines.

Item Type:Book chapter
Full text:Publisher-imposed embargo
(AM) Accepted Manuscript
File format - PDF
(531Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1115/OMAE2019-95561
Date accepted:29 March 2019
Date deposited:30 April 2019
Date of first online publication:11 November 2019
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar