We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants.

Wang, Chao and Song, Shuguang and Wei, Chunjing and Su, Li and Allen, Mark B. and Niu, Yaoling and Li, Xian-Hua and Dong, Jinlong (2019) 'Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants.', Nature geoscience., 12 (8). pp. 672-678.


The thermal and chemical state of the early Archaean deep mantle is poorly resolved due to the rare occurrences of early Archaean magnesium-rich volcanic rocks. In particular, it is not clear whether compositional heterogeneity existed in the early Archaean deep mantle and, if it did, how deep mantle heterogeneity formed. Here we present a geochronological and geochemical study on a Palaeoarchaean ultramafic–mafic suite (3.45-Gyr-old) with mantle plume signatures in Longwan, Eastern Hebei, the North China Craton. This suite consists of metamorphosed cumulates and basalts. The meta-basalts are iron rich and show the geochemical characteristics of present-day oceanic island basalt and unusually high mantle potential temperatures (1,675 °C), which suggests a deep mantle source enriched in iron and incompatible elements. The Longwan ultramafic–mafic suite is best interpreted as the remnants of a 3.45-Gyr-old enriched mantle plume. The first emergence of mantle-plume-related rocks on the Earth 3.5–3.45 billion years ago indicates that a global mantle plume event occurred with the onset of large-scale deep mantle convection in the Palaeoarchaean. Various deep mantle sources of these Palaeoarchaean mantle-plume-related rocks imply that significant compositional heterogeneity was present in the Palaeoarchaean deep mantle, most probably introduced by recycled crustal material.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:14 June 2019
Date deposited:06 August 2019
Date of first online publication:22 July 2019
Date first made open access:22 January 2020

Save or Share this output

Look up in GoogleScholar