We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval.

Liu, Zeyang and Selby, David and Zhang, Hua and Zheng, Quanfeng and Shen, Shuzhong and Sageman, Bradley B. and Grasby, Stephen E. and Beauchamp, Benoit (2019) 'Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval.', Chemical geology., 529 . p. 119313.


Two negative carbon isotope excursions (3.5–6.5‰) across the Wuchiapingian-Changhsingian boundary (WCB) are observed globally (sections in China, Canada, and Iran); however, the causative mechanism of these excursions is debated. Here, high-resolution osmium isotope (187Os/188Os or Osi) chemostratigraphy of four globally correlated WCB sections (3 in China - Meishan, Shangsi and Lianyuan and 1 in Canada - Buchanan Lake) show two separate Osi excursions to less radiogenic compositions that are coincident with the carbon isotope shifts for two of the South China sections (Lianyuan, Meishan). In contrast, only a single Osi excursion to less radiogenic compositions, coinciding with the earliest Changhsingian carbon isotope shift, is observed for the Shangsi and Buchanan Lake sections. The Osi shift is interpreted to reflect increased unradiogenic Os input from basaltic magmatism in South China, possibly related to the Emeishan large igneous province (LIP). However, 187Os/188Os data suggest that only the earliest Changhsingian volcanism had global impact on both the ocean and atmosphere. The lack of any evidence for a biotic event associated with the WCB therefore may have been due to the more regional rather than global impact of volcanism during the latest Wuchiapingian. In contrast, during the earliest Changhsingian, volcanism was sufficient to cause a more global signal in the ocean osmium record, but was inadequate, or too prolonged, to drive any significant environmental change. Volcanism, however, may have provided the isotopically light carbon that drove the negative carbon isotope excursions across the WCB.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:18 September 2019
Date deposited:22 October 2019
Date of first online publication:15 October 2019
Date first made open access:15 September 2020

Save or Share this output

Look up in GoogleScholar