We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

IIB flux non-commutativity and the global structure of field theories.

García Etxebarria, Iñaki and Heidenreich, Ben and Regalado, Diego (2019) 'IIB flux non-commutativity and the global structure of field theories.', Journal of high energy physics., 2019 (10). p. 169.


We discuss the origin of the choice of global structure for six dimensional (2, 0) theories and their compactifications in terms of their realization from IIB string theory on ALE spaces. We find that the ambiguity in the choice of global structure on the field theory side can be traced back to a subtle effect that needs to be taken into account when specifying boundary conditions at infinity in the IIB orbifold, namely the known non-commutativity of RR fluxes in spaces with torsion. As an example, we show how the classification of N = 4 theories by Aharony, Seiberg and Tachikawa can be understood in terms of choices of boundary conditions for RR fields in IIB. Along the way we encounter a formula for the fractional instanton number of N = 4 ADE theories in terms of the torsional linking pairing for rational homology spheres. We also consider six-dimensional (1, 0) theories, clarifying the rules for determining commutators of flux operators for discrete 2-form symmetries. Finally, we analyze the issue of global structure for four dimensional theories in the presence of duality defects.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Date accepted:25 September 2019
Date deposited:31 October 2019
Date of first online publication:15 October 2019
Date first made open access:31 October 2019

Save or Share this output

Look up in GoogleScholar