We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Polar flux imbalance at the sunspot cycle minimum governs hemispheric asymmetry in the following cycle.

Bhowmik, Prantika (2019) 'Polar flux imbalance at the sunspot cycle minimum governs hemispheric asymmetry in the following cycle.', Astronomy & astrophysics, 632 . A117.


Aims. Hemispheric irregularities of solar magnetic activity is a well-observed phenomenon, the origin of which has been studied through numerical simulations and data analysis techniques. In this work we explore possible causes generating north-south asymmetry in the reversal timing and amplitude of the polar field during cycle minimum. Additionally, we investigate how hemispheric asymmetry is translated from cycle to cycle. Methods. We pursued a three-step approach. Firstly, we explored the asymmetry present in the observed polar flux and sunspot area by analysing observational data of the last 110 years. Secondly, we investigated the contribution from various factors involved in the Babcock–Leighton mechanism to the evolution and generation of polar flux by performing numerical simulations with a surface flux transport model and synthetic sunspot input profiles. Thirdly, translation of hemispheric asymmetry in the following cycle was estimated by assimilating simulation-generated surface magnetic field maps at cycle minimum in a dynamo simulation. Finally, we assessed our understanding of hemispheric asymmetry in the context of observations by performing additional observational data-driven simulations. Results. Analysis of observational data shows a profound connection between the hemispheric asymmetry in the polar flux at cycle minimum and the total hemispheric activity during the following cycle. We find that the randomness associated with the tilt angle of sunspots is the most crucial element among diverse components of the Babcock–Leighton mechanism in resulting hemispheric irregularities in the evolution of polar field. Our analyses with dynamo simulations indicate that an asymmetric poloidal field at the solar minimum can introduce significant north-south asymmetry in the amplitude and timing of peak activity during the following cycle. While observational data-driven simulations reproduce salient features of the observed asymmetry in the solar cycles during the last 100 years, we speculate that fluctuations in the mean-field α-effect and meridional circulation can have finite contributions in this regard.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Publisher statement:Bhowmik, Prantika (2019). Polar flux imbalance at the sunspot cycle minimum governing hemispheric asymmetry in the following cycle. Astronomy & Astrophysics 632: A117, reproduced with permission © ESO.
Date accepted:25 October 2019
Date deposited:12 November 2019
Date of first online publication:13 December 2019
Date first made open access:28 November 2019

Save or Share this output

Look up in GoogleScholar