We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Heat transfer characteristics of external ventilated path in compact high-voltage motor.

Xu, Yongming and Jia, Yajie and Ai, Mengmeng and Wang, Yaodong (2018) 'Heat transfer characteristics of external ventilated path in compact high-voltage motor.', International journal of heat and mass transfer., 124 . pp. 1136-1146.


This paper investigates the heat transfer characteristics of the external ventilated path of a compact, 6 kV, 4-pole, 2500 kW motor using flow-thermal coordination mechanism. A computational model is set up and validated by experimental test results. A series of simulation is performed. It is found that the deflection angle α and outlet angle β of the fan blades are the key parameters affecting the efficiency of the cooling effect of the fan. Optimal measures are adopted by changing the deflection angle and outlet angle of fan blades. External fan efficiency is improved from 28.80% to 29.96% and outlet flow is increased by 0.08 m3/s by optimizing the deflection angle α and outlet angle β. According to the optimization results of external fan, heat transfer characteristics and temperature distribution of the cooler is obtained by the fluid and temperature coupling field. The cooler is optimized by adjusting the height of the windshield, increasing the number of the windshield, changing the shape of inclined plate. It is found that the temperature of hyperthermal fluid of inner ventilated path is decreased from 75 °C to 53.7 °C; at the same time the temperature of cryogenic fluid of external ventilated path is increased from 23 °C to 49.4 °C. The outlet temperature of internal fluid of post-optimized cooler is dropped by 3 °C, and the external fluid temperature is increased by 2.5 °C. The performance of fan and the cooling effect is improved. The results from this study can provide an effective method for structural optimal design of compact high-voltage motors.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2018 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:08 April 2018
Date deposited:15 November 2019
Date of first online publication:24 April 2018
Date first made open access:15 November 2019

Save or Share this output

Look up in GoogleScholar