Skip to main content

Research Repository

Advanced Search

Estimating the galaxy two-point correlation function using a split random catalog

Keihänen, E.; Kurki-Suonio, H.; Lindholm, V.; Viitanen, A.; Suur-Uski, A.-S.; Allevato, V.; Branchini, E.; Marulli, F.; Norberg, P.; Tavagnacco, D.; de la Torre, S.; Valiviita, J.; Viel, M.; Bel, J.; Frailis, M.; Sánchez, A.G.

Estimating the galaxy two-point correlation function using a split random catalog Thumbnail


Authors

E. Keihänen

H. Kurki-Suonio

V. Lindholm

A. Viitanen

A.-S. Suur-Uski

V. Allevato

E. Branchini

F. Marulli

D. Tavagnacco

S. de la Torre

J. Valiviita

M. Viel

J. Bel

M. Frailis

A.G. Sánchez



Abstract

The two-point correlation function of the galaxy distribution is a key cosmological observable that allows us to constrain the dynamical and geometrical state of our Universe. To measure the correlation function we need to know both the galaxy positions and the expected galaxy density field. The expected field is commonly specified using a Monte-Carlo sampling of the volume covered by the survey and, to minimize additional sampling errors, this random catalog has to be much larger than the data catalog. Correlation function estimators compare data–data pair counts to data–random and random–random pair counts, where random–random pairs usually dominate the computational cost. Future redshift surveys will deliver spectroscopic catalogs of tens of millions of galaxies. Given the large number of random objects required to guarantee sub-percent accuracy, it is of paramount importance to improve the efficiency of the algorithm without degrading its precision. We show both analytically and numerically that splitting the random catalog into a number of subcatalogs of the same size as the data catalog when calculating random–random pairs and excluding pairs across different subcatalogs provides the optimal error at fixed computational cost. For a random catalog fifty times larger than the data catalog, this reduces the computation time by a factor of more than ten without affecting estimator variance or bias.

Citation

Keihänen, E., Kurki-Suonio, H., Lindholm, V., Viitanen, A., Suur-Uski, A., Allevato, V., …Sánchez, A. (2019). Estimating the galaxy two-point correlation function using a split random catalog. Astronomy & Astrophysics, 631, Article A73. https://doi.org/10.1051/0004-6361/201935828

Journal Article Type Article
Acceptance Date Jul 24, 2019
Online Publication Date Oct 22, 2019
Publication Date Nov 30, 2019
Deposit Date Nov 20, 2019
Publicly Available Date Nov 20, 2019
Journal Astronomy and astrophysics.
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 631
Article Number A73
DOI https://doi.org/10.1051/0004-6361/201935828

Files

Published Journal Article (389 Kb)
PDF

Copyright Statement
Keihänen, E., Kurki-Suonio, H., Lindholm, V., Viitanen, A., Suur-Uski, A.-S., Allevato, V., Branchini, E., Marulli, F., Norberg, P., Tavagnacco, D., de la Torre, S., Valiviita, J., Viel, M., Bel, J., Frailis, M. & Sánchez, A. G. (2019). Estimating the galaxy two-point correlation function using a split random catalog. Astronomy & Astrophysics 631: A73., reproduced with permission,© ESO.





You might also like



Downloadable Citations