Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Measurement of the near field distribution of a microwave horn using a resonant atomic probe.

Bai, Jingxu and Fan, Jiabei and Hao, Liping and Spong, Nicholas L. R. and Jiao, Yuechun and Zhao, Jianming (2019) 'Measurement of the near field distribution of a microwave horn using a resonant atomic probe.', Applied sciences., 9 (22). p. 4895.

Abstract

We measure the near field distribution of a microwave horn with a resonant atomic probe. The microwave field emitted by a standard microwave horn is investigated utilizing Rydberg electromagnetically inducted transparency (EIT), an all-optical Rydberg detection, in a room temperature caesium vapor cell. The ground 6S1/2 , excited 6P3/2 , and Rydberg 56D5/2 states constitute a three-level system, used as an atomic probe to detect microwave electric fields by analyzing microwave dressed Autler–Townes (AT) splitting. We present a measurement of the electric field distribution of the microwave horn operating at 3.99 GHz in the near field, coupling the transition 56D5/2→57P3/2 . The microwave dressed AT spectrum reveals information on both the strength and polarization of the field emitted from the microwave horn simultaneously. The measurements are compared with field measurements obtained using a dipole metal probe, and with simulations of the electromagnetic simulated software (EMSS). The atomic probe measurement is in better agreement with the simulations than the metal probe. The deviation from the simulation of measurements taken with the atomic probe is smaller than the metal probe, improving by 1.6 dB. The symmetry of the amplitude distribution of the measured field is studied by comparing the measurements taken on either side of the field maxima.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
(2132Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.3390/app9224895
Publisher statement:© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Date accepted:No date available
Date deposited:06 December 2019
Date of first online publication:14 November 2019
Date first made open access:06 December 2019

Save or Share this output

Export:
Export
Look up in GoogleScholar