Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Spatial scales and locality of magnetic helicity.

Prior, Christopher and Hawkes, Gareth and Berger, M. (2020) 'Spatial scales and locality of magnetic helicity.', Astronomy & astrophysics., 635 . A95.

Abstract

Context: Magnetic helicity is approximately conserved in resistive magnetohydrodynamic models. It quantifies the entanglement of the magnetic field within the plasma. The transport and removal of helicity is crucial in both dynamo development in the solar interior and active region evolution in the solar corona. This transport typically leads to highly inhomogeneous distributions of entanglement. Aims: There exists no consistent systematic means of decomposing helicity over varying spatial scales and in localised regions. Spectral helicity decompositions can be used in periodic domains and is fruitful for the analysis of homogeneous phenomena. This paper aims to develop methods for analysing the evolution of magnetic field topology in non-homogeneous systems. Methods: The method of multi-resolution wavelet decomposition is applied to the magnetic field. It is demonstrated how this decomposition can further be applied to various quantities associated with magnetic helicity, including the field line helicity. We use a geometrical definition of helicity, which allows these quantities to be calculated for fields with arbitrary boundary conditions. Results: It is shown that the multi-resolution decomposition of helicity has the crucial property of local additivity. We demonstrate a general linear energy-topology conservation law, which significantly generalises the two-point correlation decomposition used in the analysis of homogeneous turbulence and periodic fields. The localisation property of the wavelet representation is shown to characterise inhomogeneous distributions, which a Fourier representation cannot. Using an analytic representation of a resistive braided field relaxation, we demonstrate a clear correlation between the variations in energy at various length scales and the variations in helicity at the same spatial scales. Its application to helicity flows in a surface flux transport model show how various contributions to the global helicity input from active region field evolution and polar field development are naturally separated by this representation. Conclusions: The multi-resolution wavelet decomposition can be used to analyse the evolution of helicity in magnetic fields in a manner which is consistently additive. This method has the advantage over more established spectral methods in that it clearly characterises the inhomogeneous nature of helicity flows where spectral methods cannot. Further, its applicability in aperiodic models significantly increases the range of potential applications.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(10717Kb)
Full text:(VoR) Version of Record
Download PDF
(10621Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1051/0004-6361/201936675
Publisher statement:Prior, Christopher, Hawkes, Gareth & Berger, M. (2020). Spatial scales and locality of magnetic helicity. Astronomy and Astrophysics 635: A95 reproduced with permission, © ESO.
Date accepted:08 December 2019
Date deposited:10 December 2019
Date of first online publication:13 March 2020
Date first made open access:03 January 2020

Save or Share this output

Export:
Export
Look up in GoogleScholar