Skip to main content

Research Repository

Advanced Search

Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration

Sabater, AM; Ward, HC; Hill, TC; Gornall, G; Wade, TJ; Evans, JG; Prieto-Blanco, A; Disney, M; Phoenix, GK; Williams, M; Huntley, B; Baxter, R; Mencuccini, M; Poyatos, R

Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration Thumbnail


Authors

AM Sabater

HC Ward

TC Hill

G Gornall

TJ Wade

JG Evans

A Prieto-Blanco

M Disney

GK Phoenix

M Williams

B Huntley

M Mencuccini

R Poyatos



Abstract

Potential land‐climate feedbacks in subarctic regions, where rapid warming is driving forest expansion into the tundra, may be mediated by differences in transpiration of different plant functional types. Here we assess the environmental controls of overstorey transpiration and its relevance for ecosystem evapotranspiration in subarctic deciduous woodlands. We measured overstorey transpiration of mountain birch canopies and ecosystem evapotranspiration in two locations in northern Fennoscandia, having dense (Abisko) and sparse (Kevo) overstories. For Kevo, we also upscale chamber‐measured understorey evapotranspiration from shrubs and lichen using a detailed land cover map. Sub‐daily evaporative fluxes were not affected by soil moisture, and showed similar controls by vapour pressure deficit and radiation across sites. At the daily timescale, increases in evaporative demand led to proportionally higher contributions of overstorey transpiration to ecosystem evapotranspiration. For the entire growing season, the overstorey transpired 33% of ecosystem evapotranspiration in Abisko and only 16% in Kevo. At this latter site, the understorey had a higher leaf area index and contributed more to ecosystem evapotranspiration compared to the overstorey birch canopy. In Abisko, growing season evapotranspiration was 27% higher than precipitation, consistent with a gradual soil moisture depletion over the summer. Our results show that overstorey canopy transpiration in subarctic deciduous woodlands is not the dominant evaporative flux. However, given the observed environmental sensitivity of evapotranspiration components, the role of deciduous trees in driving ecosystem evapotranspiration may increase with the predicted increases in tree cover and evaporative demand across subarctic regions.

Citation

Sabater, A., Ward, H., Hill, T., Gornall, G., Wade, T., Evans, J., …Poyatos, R. (2020). Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology, 13(3), Article e2190. https://doi.org/10.1002/eco.2190

Journal Article Type Article
Acceptance Date Dec 19, 2019
Online Publication Date Feb 19, 2020
Publication Date Apr 1, 2020
Deposit Date Jan 6, 2020
Publicly Available Date Feb 19, 2021
Journal Ecohydrology
Print ISSN 1936-0584
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 13
Issue 3
Article Number e2190
DOI https://doi.org/10.1002/eco.2190

Files

Accepted Journal Article (3.1 Mb)
PDF

Copyright Statement
This is the accepted version of the following article: Sabater, AM, Ward, HC, Hill, TC, Gornall, G, Wade, TJ, Evans, JG, Prieto-Blanco, A, Disney, M, Phoenix, GK, Williams, M, Huntley, B, Baxter, R, Mencuccini, M & Poyatos, R (2020). Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 13(3): e2190 which has been published in final form at https://doi.org/10.1002/eco.2190. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving.





You might also like



Downloadable Citations