We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

CD40L membrane retention enhances the immunostimulatory effects of CD40 ligation.

Elmetwali, Taha and Salman, Asmaa and Wei, Wenbin and Hussain, Syed A. and Young, Lawrence S. and Palmer, Daniel H. (2020) 'CD40L membrane retention enhances the immunostimulatory effects of CD40 ligation.', Scientific reports., 10 (1). p. 342.


In carcinomas, the nature of CD40 ligand shapes the outcome of CD40 ligation. To date, the consequences of membrane-bound CD40L (mCD40L) on its immune-stimulatory function are unknown. Here, we examined the impact of mCD40L versus soluble CD40L (sCD40L) on T24 bladder carcinoma gene expression profiling. Of 410 differentially expressed genes, 286 were upregulated and 124 downregulated by mCD40L versus sCD40L. Gene ontology enrichment analysis revealed immune-stimulatory function as the most significant enriched biological process affected by upregulated transcripts, while those downregulated were critical for cell growth and division. Furthermore, immature dendritic cells (iDC) responded to mCD40L with enhanced maturation and activation over sCD40L evidenced by higher expression levels of CD83, CD86, HLA-DR and CD54, increased secretion of IL12 and IL10 and higher tumour-antigen (TA) uptake capacity. Furthermore, autologus CD3+ T cells responded to TA-loaded mCD40L-activated DC with increased proliferation and cytotoxic response (CD107a and IFN-γ-producing CD3+ CD8+ T cells) to the tumour-loaded autologous PBMCs compared to sCD40L. Thus, these data indicate that mCD40L enhances the immunostimulatory capacity over sCD40L. Furthermore, the ability of mCD40L to also directly induce cell death in CD40-expressing carcinomas, subsequently releasing tumour-specific antigens into the tumour microenvironment highlights the potential for mCD40L as a multi-faceted anti-cancer immunotherapeutic.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Date accepted:24 December 2019
Date deposited:29 January 2020
Date of first online publication:15 January 2020
Date first made open access:29 January 2020

Save or Share this output

Look up in GoogleScholar