We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Senecio as a model system for integrating studies of genotype, phenotype and fitness.

Walter, Greg M. and Abbott, Richard J. and Brennan, Adrian C. and Bridle, Jon R. and Chapman, Mark and Clark, James and Filatov, Dmitry and Nevado, Bruno and Ortiz Barrientos, Daniel and Hiscock, Simon J. (2020) 'Senecio as a model system for integrating studies of genotype, phenotype and fitness.', New phytologist., 226 (2). pp. 326-344.


Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2020 The Authors.
Date accepted:17 December 2019
Date deposited:02 April 2020
Date of first online publication:17 March 2020
Date first made open access:02 April 2020

Save or Share this output

Look up in GoogleScholar