We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

An assessment of global forest change datasets for national forest monitoring and reporting.

Galiatsatos, N. and Donoghue, D.N. and Watt, P. and Bholanath, P. and Pickering, J. and Hansen, M.C. and Mahmood, A.R. (2020) 'An assessment of global forest change datasets for national forest monitoring and reporting.', Remote sensing., 12 (11). p. 1790.


Global Forest Change datasets have the potential to assist countries with national forest measuring, reporting and verification (MRV) requirements. This paper assesses the accuracy of the Global Forest Change data against nationally derived forest change data by comparing the forest loss estimates from the global data with the equivalent data from Guyana for the period 2001–2017. To perform a meaningful comparison between these two datasets, the initial year 2000 forest state needs first to be matched to the definition of forest land cover appropriate to a local national setting. In Guyana, the default definition of 30% tree cover overestimates forest area is by 483,000 ha (18.15%). However, by using a tree canopy cover (i.e., density of tree canopy coverage metric) threshold of 94%, a close match between the Guyana-MRV non-forest area and the Global Forest Change dataset is achieved with a difference of only 24,210 ha (0.91%) between the two maps. A complimentary analysis using a two-stage stratified random sampling design showed the 94% tree canopy cover threshold gave a close correspondence (R2 = 0.98) with the Guyana-MRV data, while the Global Forest Change default setting of 30% tree canopy cover threshold gave a poorer fit (R2 = 0.91). Having aligned the definitions of forest for the Global Forest Change and the Guyana-MRV products for the year 2000, we show that over the period 2001–2017 the Global Forest Change data yielded a 99.34% overall Correspondence with the reference data and a 94.35% Producer’s Accuracy. The Guyana-MRV data yielded a 99.36% overall Correspondence with the reference data and a 95.94% Producer’s Accuracy. A year-by-year analysis of change from 2001–2017 shows that in some years, the Global Forest Change dataset underestimates change, and in other years, such as 2016 and 2017, change is detected that is not forest loss or gain, hence the apparent overestimation. The conclusion is that, when suitably calibrated for percentage tree cover, the Global Forest Change datasets give a good first approximation of forest loss (and, probably, gains). However, in countries with large areas of forest cover and low levels of deforestation, these data should not be relied upon to provide a precise annual loss/gain or rate of change estimate for audit purposes without using independent high-quality reference data.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
Date accepted:15 May 2020
Date deposited:02 June 2020
Date of first online publication:02 June 2020
Date first made open access:02 June 2020

Save or Share this output

Look up in GoogleScholar