We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Basin inversion : a worldwide Late Cenozoic phenomenon.

Bridgland, David R. and Westaway, Rob and Hu, Zhenbo (2020) 'Basin inversion : a worldwide Late Cenozoic phenomenon.', Global and planetary change., 193 . p. 103260.


The occurrence of endorheic basins on the Tibetan Plateau, both in its Pleistocene history and (fewer in number) at the present day, has been attributed to the ‘basin-and-range’ character of the orogen; the understanding of their conversion to exorheic drainage is key to interpreting the evolution of the Yellow River and other river systems of the plateau. However, such basins also occur in areas of lower altitude and relief and can be observed to have been considerably more common in pre-Quaternary times. In many areas, for example the Mediterranean region, such basins, previously having accumulated stacked sedimentary sequences, typically ‘inverted’ in the late Pliocene or at around the Pliocene–Pleistocene boundary, possibly as part of a response to the cooling of global climate and its effect on surface processes. Some basins have inverted later, at around the time of the Mid-Pleistocene Revolution, coinciding with the increased severity of climate resulting from the 100 ka Milankovich cycles that followed that change. The progressive incision into the fills of these inverted sedimentary basins has also been linked to this climatic influence, perhaps taking effect as a result of erosional isostatic uplift, which would have replaced the accumulation-induced subsidence (also isostatic) of the basins. NW Europe, including Britain, had sediment-accumulating basins in the Early Cenozoic; the timing of their inversion is poorly known as a result of the paucity of preserved evidence from the Late Cenozoic in such areas. Endorheic basins that survive at the present day are mainly in regions of relative aridity and are often controlled by active tectonic structures, such as the pull-apart basins of the Dead Sea Fault Zone and similar examples. This review discusses the evidence from different climatic regions, tectonic settings and areas of different crustal type, with a view to elucidating meaningful patterns that might throw light on this phenomenon.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:10 June 2020
Date deposited:30 June 2020
Date of first online publication:27 June 2020
Date first made open access:27 June 2021

Save or Share this output

Look up in GoogleScholar