Marolf, D. and Ross, S. F. (2002) 'Plane waves : to infinity and beyond !', Classical and quantum gravity., 19 . pp. 6289-6302.
Abstract
We describe the asymptotic boundary of the general homogeneous plane wave spacetime, using a construction of the 'points at infinity' from the causal structure of the spacetime as introduced by Geroch, Kronheimer and Penrose. We show that this construction agrees with the conformal boundary obtained by Berenstein and Nastase for the maximally supersymmetric ten-dimensional plane wave. We see in detail how the possibility of going beyond (or around) infinity arises from the structure of light cones. We also discuss the extension of the construction to time-dependent plane wave solutions, focusing on the examples obtained from the Penrose limit of Dp-branes.
Item Type: | Article |
---|---|
Full text: | Full text not available from this repository. |
Publisher Web site: | http://dx.doi.org/10.1088/0264-9381/19/24/302 |
Date accepted: | No date available |
Date deposited: | No date available |
Date of first online publication: | 21 December 2002 |
Date first made open access: | No date available |
Save or Share this output
Export: | |
Look up in GoogleScholar |