We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Spatial organisation and physical characteristics of large peat blocks in an upland fluvial peatland ecosystem.

Boothroyd, Richard J. and Warburton, Jeff (2020) 'Spatial organisation and physical characteristics of large peat blocks in an upland fluvial peatland ecosystem.', Geomorphology., 370 . p. 107397.


This paper assesses the size, shape and spatial organisation of organic, carbon-rich debris (peat blocks) in an upland fluvial peatland ecosystem. Peat block inventories collected in 2002 and 2012 at an alluvial reach of Trout Beck (North Pennines; United Kingdom) provide independent surveys for investigating the physical characteristics and spatial organisation of the organic debris. Peat blocks deposited along the 450 m reach represent a substantial volume of fluvially derived in-channel sediment and carbon flux at the macroscale (total peat volume 11 m3 (2002) and 17 m3 (2012)). Results show that inferred peat block transport distances depend on their size and shape. Smaller and more spherical equant shaped peat blocks are transported 1.62 and 1.72 times the distance of prolate and elongate shaped peat blocks. Downstream fining relationships provide a first-order approximation of peat block degradation rates. These degradation rates are high (up to 2 mm/m for the a-axis) and indicate considerable fine sediment release during transport. Hypsometric relations show that 73% of peat blocks are distributed within 1 channel width of the thalweg, indicating lateral organisation and a pattern of preferential deposition at the active channel margin. The local effects of obstructions from topography, roughness and slope promote peat block deposition, but given the low density of the blocks and close proximity to the flow the potential for re-entrainment is high.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:21 August 2020
Date deposited:01 September 2020
Date of first online publication:26 August 2020
Date first made open access:26 August 2021

Save or Share this output

Look up in GoogleScholar