We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Holocene glacier and ice cap fluctuations in southwest Greenland inferred from two lake records.

Larocca, Laura J. and Axford, Yarrow and Woodroffe, Sarah A. and Lasher, G. Everett and Gawin, Barbara (2020) 'Holocene glacier and ice cap fluctuations in southwest Greenland inferred from two lake records.', Quaternary science reviews., 246 . p. 106529.


Glaciers and ice caps (GICs) respond rapidly to changes in temperature and precipitation. Thus, records of their past fluctuations yield valuable information on past climate. However, relatively little is known about the long-term, Holocene history of Greenland’s local GICs, peripheral to the Greenland Ice Sheet. Here we report sediment records of Holocene glacier activity from two distally fed glacial lakes near Buksefjord, southwest Greenland. The two lakes’ watersheds host modern GICs of contrasting size. The Pers Lake (informal name) watershed drains part (3 km2) of a single small ice cap. In contrast, nearby Lake T3’s (informal name) watershed drains numerous GICs totaling 100 km2. At the time it emerged from the sea ∼8.6 ka BP, Pers Lake was receiving no glacial meltwater input. Sediment physical and geochemical properties indicate persistent meltwater input and regrowth of the ice cap within the Pers Lake catchment beginning at ∼1.4 ka BP, after almost 3000 years of sporadic meltwater input beginning ∼4.3 ka BP. The ice cap above Pers Lake reached a maximum late Holocene extent during the final phase of the Little Ice Age (LIA), ∼0.1 ka BP. The complementary Lake T3 sediment record suggests continued meltwater input from the larger suite of upstream GICs from the time of the lake’s isolation from the sea ∼8.4–7.5 ka BP through to the present. This indicates that some GICs here probably survived the Holocene Thermal Maximum (HTM), although were significantly reduced in size for an extended period (of unknown age and duration). Combined with evidence from Pers Lake and prior studies that show GICs at low and intermediate elevations in this region melted away completely during the HTM, and evidence for GIC presence at Lake T3, we provide lower and upper bounds on regional HTM equilibrium-line altitudes (ELAs). We estimate that regional ELAs were between ∼1370 and 1470 m above sea level in the early-to-middle Holocene. From the middle to late Holocene, our results, along with other regional GIC studies, indicate progressive lowering of regional glacier ELAs in response to Neoglacial summer cooling of ∼2.7 °C, assuming no change in precipitation.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:03 August 2020
Date deposited:04 September 2020
Date of first online publication:19 August 2020
Date first made open access:19 August 2021

Save or Share this output

Look up in GoogleScholar