We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

The loss of tension in an infinite membrane with holes distributed according to a Poisson law.

Menshikov, M. V. and Rybnikov, K. A. and Volkov, S. E. (2002) 'The loss of tension in an infinite membrane with holes distributed according to a Poisson law.', Advances in applied probability., 34 (2). p. 292.


What is the effect of punching holes at random in an infinite tensed membrane? When will the membrane still support tension? This problem was introduced by Connelly in connection with applications of rigidity theory to natural sciences. The answer clearly depends on the shapes and the distribution of the holes. We briefly outline a mathematical theory of tension based on graph rigidity theory and introduce a probabilistic model for this problem. We show that if the centers of the holes are distributed in R2 according to a Poisson law with density λ > 0, and the shapes are i.i.d. and independent of the locations of their centers, the tension is lost on all of R2 for any λ. After introducing a certain step-by-step dynamic for the loss of tension, we establish the existence of a nonrandom N = N(λ) such that N steps are almost surely enough for the loss of tension. Also, we prove that N(λ) > 2 almost surely for sufficiently small λ. The processes described in the paper are related to bootstrap and rigidity percolation.

Item Type:Article
Additional Information:
Keywords:Bootstrap percolation, Poisson process, Tension, Rigidity.
Full text:Full text not available from this repository.
Publisher Web site:
Date accepted:No date available
Date deposited:No date available
Date of first online publication:01 January 1970
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar