Skip to main content

Research Repository

Advanced Search

Complex Interactions Between Large Igneous Province Emplacement and Global‐Temperature Changes During the Cenomanian‐Turonian Oceanic Anoxic Event (OAE 2)

Percival, L.M.E.; Helmond, N.A.G.M.; Selby, D.; Goderis, S.; Claeys, P.

Complex Interactions Between Large Igneous Province Emplacement and Global‐Temperature Changes During the Cenomanian‐Turonian Oceanic Anoxic Event (OAE 2) Thumbnail


Authors

L.M.E. Percival

N.A.G.M. Helmond

S. Goderis

P. Claeys



Abstract

Super greenhouse temperatures at the onset of the Cenomanian‐Turonian oceanic anoxic event (OAE 2) have been widely linked with large igneous province (LIP) volcanic activity. However, the extent to which volcanism influenced subsequent climate changes throughout OAE 2, such as global cooling during the Plenus Cold Event (PCE) early in the OAE, and the subsequent return to very warm conditions through the second part of the crisis remain less clear. Here, new osmium‐isotope (187Os/188Os) data are presented from the northeastern margin of the proto‐North Atlantic Ocean (ODP Leg 174AX Bass River, NJ, USA). The results are consistent with previously published OAE 2 records and are similarly interpreted as documenting LIP activity while further demonstrating the ability to use osmium‐isotope stratigraphy as a global chemostratigraphic marker in open‐ocean records. Correlations of 187Os/188Os and sea‐surface temperature trends at Bass River and other sites show that the earliest PCE cooling coincided with intense volcanism, but that LIP activity began to decline during or soon after the cold pulse. These temporal relationships support previous hypotheses that the PCE was regionally diachronous and likely caused by enhanced carbon sequestration via organic‐matter burial and silicate weathering, rather than a period of volcanic quiescence, while the persistently warm conditions later in OAE 2 were linked to reduced silicate weathering rather than sustained volcanism. These findings highlight the complex interactions between LIP emplacement and climate responses during OAE 2, reemphasizing the need for similar correlations between volcanism and paleotemperature proxy data for other major events in Earth's history.

Citation

Percival, L., Helmond, N., Selby, D., Goderis, S., & Claeys, P. (2020). Complex Interactions Between Large Igneous Province Emplacement and Global‐Temperature Changes During the Cenomanian‐Turonian Oceanic Anoxic Event (OAE 2). Paleoceanography and Paleoclimatology, 35(10), Article e2020PA004016. https://doi.org/10.1029/2020pa004016

Journal Article Type Article
Acceptance Date Sep 17, 2020
Online Publication Date Oct 12, 2020
Publication Date 2020-10
Deposit Date Oct 14, 2020
Publicly Available Date Mar 29, 2024
Journal Paleoceanography and Paleoclimatology
Electronic ISSN 2572-4525
Publisher American Geophysical Union
Peer Reviewed Peer Reviewed
Volume 35
Issue 10
Article Number e2020PA004016
DOI https://doi.org/10.1029/2020pa004016

Files

Published Journal Article (Advance online version) (1.5 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by-nc/4.0/

Copyright Statement
Advance online version ©2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.





You might also like



Downloadable Citations