Skip to main content

Research Repository

Advanced Search

Galactic inflow and wind recycling rates in the EAGLE simulations

Mitchell, P.D.; Schaye, J.; Bower, R.G.

Galactic inflow and wind recycling rates in the EAGLE simulations Thumbnail


Authors

P.D. Mitchell

J. Schaye

R.G. Bower



Abstract

The role of galactic wind recycling represents one of the largest unknowns in galaxy evolution, as any contribution of recycling to galaxy growth is largely degenerate with the inflow rates of first-time infalling material, and the rates with which outflowing gas and metals are driven from galaxies. We present measurements of the efficiency of wind recycling from the EAGLE cosmological simulation project, leveraging the statistical power of large-volume simulations that reproduce a realistic galaxy population. We study wind recycling at the halo scale, i.e. gas that has been ejected beyond the halo virial radius, and at the galaxy scale, i.e. gas that has been ejected from the interstellar medium to at least ≈10 per cent of the virial radius. Galaxy-scale wind recycling is generally inefficient, with a characteristic return time-scale that is comparable to or longer than a Hubble time, and with an efficiency that clearly peaks at the characteristic halo mass of M200=1012M⊙⁠. Correspondingly, the majority of gas being accreted on to galaxies in EAGLE is infalling for the first time. Recycling is more efficient at the halo scale, with values that differ by orders of magnitude from those assumed by semi-analytical galaxy formation models. Differences in the efficiency of wind recycling with other hydrodynamical simulations are currently difficult to assess, but are likely smaller. We find that cumulative first-time gas accretion rates at the virial radius are reduced relative to the expectation from dark matter accretion for haloes with mass M200<1012M⊙⁠, indicating efficient preventative feedback on halo scales.

Citation

Mitchell, P., Schaye, J., & Bower, R. (2020). Galactic inflow and wind recycling rates in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 497(4), 4495-4516. https://doi.org/10.1093/mnras/staa2252

Journal Article Type Article
Acceptance Date Jul 27, 2020
Online Publication Date Aug 6, 2020
Publication Date 2020-10
Deposit Date Oct 20, 2020
Publicly Available Date Oct 22, 2020
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 497
Issue 4
Pages 4495-4516
DOI https://doi.org/10.1093/mnras/staa2252

Files

Published Journal Article (2 Mb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.




You might also like



Downloadable Citations