We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Galactic inflow and wind recycling rates in the EAGLE simulations.

Mitchell, P. D. and Schaye, J. and Bower, R. G. (2020) 'Galactic inflow and wind recycling rates in the EAGLE simulations.', Monthly notices of the Royal Astronomical Society., 497 (4). pp. 4495-4516.


The role of galactic wind recycling represents one of the largest unknowns in galaxy evolution, as any contribution of recycling to galaxy growth is largely degenerate with the inflow rates of first-time infalling material, and the rates with which outflowing gas and metals are driven from galaxies. We present measurements of the efficiency of wind recycling from the EAGLE cosmological simulation project, leveraging the statistical power of large-volume simulations that reproduce a realistic galaxy population. We study wind recycling at the halo scale, i.e. gas that has been ejected beyond the halo virial radius, and at the galaxy scale, i.e. gas that has been ejected from the interstellar medium to at least ≈10 per cent of the virial radius. Galaxy-scale wind recycling is generally inefficient, with a characteristic return time-scale that is comparable to or longer than a Hubble time, and with an efficiency that clearly peaks at the characteristic halo mass of M200=1012M⊙⁠. Correspondingly, the majority of gas being accreted on to galaxies in EAGLE is infalling for the first time. Recycling is more efficient at the halo scale, with values that differ by orders of magnitude from those assumed by semi-analytical galaxy formation models. Differences in the efficiency of wind recycling with other hydrodynamical simulations are currently difficult to assess, but are likely smaller. We find that cumulative first-time gas accretion rates at the virial radius are reduced relative to the expectation from dark matter accretion for haloes with mass M200<1012M⊙⁠, indicating efficient preventative feedback on halo scales.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Date accepted:27 July 2020
Date deposited:22 October 2020
Date of first online publication:06 August 2020
Date first made open access:22 October 2020

Save or Share this output

Look up in GoogleScholar