Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution.

Drikvandi, Reza (2017) 'Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution.', Journal of pharmacokinetics and pharmacodynamics., 44 (3). pp. 223-232.

Abstract

Nonlinear mixed-effects models are frequently used for pharmacokinetic data analysis, and they account for inter-subject variability in pharmacokinetic parameters by incorporating subject-specific random effects into the model. The random effects are often assumed to follow a (multivariate) normal distribution. However, many articles have shown that misspecifying the random-effects distribution can introduce bias in the estimates of parameters and affect inferences about the random effects themselves, such as estimation of the inter-subject variability. Because random effects are unobservable latent variables, it is difficult to assess their distribution. In a recent paper we developed a diagnostic tool based on the so-called gradient function to assess the random-effects distribution in mixed models. There we evaluated the gradient function for generalized liner mixed models and in the presence of a single random effect. However, assessing the random-effects distribution in nonlinear mixed-effects models is more challenging, especially when multiple random effects are present, and therefore the results from linear and generalized linear mixed models may not be valid for such nonlinear models. In this paper, we further investigate the gradient function and evaluate its performance for such nonlinear mixed-effects models which are common in pharmacokinetics and pharmacodynamics. We use simulations as well as real data from an intensive pharmacokinetic study to illustrate the proposed diagnostic tool.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(541Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1007/s10928-017-9510-8
Publisher statement:This is a post-peer-review, pre-copyedit version of a journal article published in Journal of pharmacokinetics and pharmacodynamics. The final authenticated version is available online at: https://doi.org/10.1007/s10928-017-9510-8
Date accepted:07 February 2017
Date deposited:04 November 2020
Date of first online publication:13 February 2017
Date first made open access:04 November 2020

Save or Share this output

Export:
Export
Look up in GoogleScholar