Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers.

Maniatis, G. and Hoey, T. and Hodge, R. and Rickenmann, D. and Badoux, A. 'Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers.', ESurf, 8 . pp. 1067-1099.

Abstract

Quantifying the force regime that controls the movement of a single grain during fluvial transport has historically proven to be difficult. Inertial micro-electromechanical system (MEMS) sensors (sensor assemblies that mainly comprise micro-accelerometers and gyroscopes) can used to address this problem using a “smart pebble”: a mobile inertial measurement unit (IMU) enclosed in a stone-like assembly that can measure directly the forces on a particle during sediment transport. Previous research has demonstrated that measurements using MEMS sensors can be used to calculate the dynamics of single grains over short time periods, despite limitations in the accuracy of the MEMS sensors that have been used to date. This paper develops a theoretical framework for calculating drag and lift forces on grains based on IMU measurements. IMUs were embedded a spherical and an ellipsoidal grain and used in flume experiments in which flow was increased until the grain moved. Acceleration measurements along three orthogonal directions were then processed to calculate the threshold force for entrainment, resulting in a statistical approximation of inertial impulse thresholds for both the lift and drag components of grain inertial dynamics. The ellipsoid IMU was also deployed in a series of experiments in a steep stream (Erlenbach, Switzerland). The inertial dynamics from both sets of experiments provide direct measurement of the resultant forces on sediment particles during transport, which quantifies (a) the effect of grain shape and (b) the effect of varied-intensity hydraulic forcing on the motion of coarse sediment grains during bedload transport. Lift impulses exert a significant control on the motion of the ellipsoid across hydraulic regimes, despite the occurrence of higher-magnitude and longer-duration drag impulses. The first-order statistical generalisation of the results suggests that the kinetics of the ellipsoid are characterised by low- or no-mobility states and that the majority of mobility states are controlled by lift impulses.

Item Type:Article
Full text:Publisher-imposed embargo
(AM) Accepted Manuscript
File format - PDF
(18526Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
(8207Kb)
Status:Peer-reviewed
Publisher Web site:https://www.earth-surface-dynamics.net/
Publisher statement:© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Date accepted:06 November 2020
Date deposited:08 December 2020
Date of first online publication:21 December 2020
Date first made open access:05 January 2022

Save or Share this output

Export:
Export
Look up in GoogleScholar