Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

A model for permeability evolution during volcanic welding

Wadsworth, Fabian B. and Vasseur, Jérémie and Llewellin, Edward W. and Brown, Richard J. and Tuffen, Hugh and Gardner, James E. and Kendrick, Jackie E. and Lavallée, Yan and Dobson, Katherine J. and Heap, Michael J. and Dingwell, Donald B. and Hess, Kai-Uwe and Schauroth, Jenny and von Aulock, Felix W. and Kushnir, Alexandra R.L. and Marone, Federica (2021) 'A model for permeability evolution during volcanic welding.', Journal of volcanology and geothermal research., 409 . p. 107118.

Abstract

Volcanic ash and pyroclasts can weld when deposited hot by pyroclastic density currents, in near-vent fall deposits, or in fractures in volcano interiors. Welding progressively decreases the permeability of the particle packs, influencing a range of magmatic and volcanic processes, including magma outgassing, which is an important control on eruption dynamics. Consequently, there is a need for a quantitative model for permeability evolution during welding of ash and pyroclasts under the range of conditions encountered in nature. Here we present in situ experiments in which hydrous, crystal-free, glassy pyroclasts are imaged via x-ray tomography during welding at high temperature. For each 3D dataset acquired, we determine the porosity, Darcian gas permeability, specific surface area, and pore connectivity. We find that all of these quantities decrease as a critical percolation threshold is approached. We develop a constitutive mathematical model for the evolution of permeability in welding volcanic systems based on percolation theory, and validate the model against our experimental data. Importantly, our model accounts for polydispersivity of the grainsize in the particle pack, the pressures acting on the pack, and changes in particle viscosity arising from degassing of dissolved H2O during welding. Our model is theoretically grounded and has no fitting parameters, hence it should be valid across all magma compositions. The model can be used to predict whether a cooling pyroclast pack will have sufficient time to weld and to degas, the scenarios under which a final deposit will retain a permeable network, the timescales over which sealing occurs, and whether a welded deposit will have disequilibrium or equilibrium H2O content. A user-friendly implementation of the model is provided.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
(3407Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.jvolgeores.2020.107118
Publisher statement:This is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Date accepted:06 November 2020
Date deposited:24 February 2021
Date of first online publication:10 November 2020
Date first made open access:24 February 2021

Save or Share this output

Export:
Export
Look up in GoogleScholar