Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Changing Significance of Landslide Hazard and Risk After The 2015 Mw 7.8 Gorkha, Nepal Earthquake

Rosser, NJ and Kincey, ME and Oven, KJ and Densmore, AL and Robinson, TR and Pujara, DS and Shrestha, R and Smutny, J and Gurung, K and Lama, S and Dhital, MR (2021) 'Changing Significance of Landslide Hazard and Risk After The 2015 Mw 7.8 Gorkha, Nepal Earthquake.', Progress in Disaster Science, 10 . p. 100159.

Abstract

The 2015 Mw 7.8 Gorkha, Nepal Earthquake triggered in excess of 20,000 landslides across 14 districts of Central and Western Nepal. Whilst the instantaneous impact of these landslides was significant, the ongoing effect of the earthquake on changing the potential for rainfall-triggered landsliding in the months and years that followed has remained poorly understood and challenging to predict. To provide insight into how landsliding has evolved since the earthquake, and how it has impacted those living in the affected area, a detailed time-series landslide mapping campaign was undertaken to monitor the evolution of coseismic landslides and the initiation of new post-seismic landslides. This was supplemented by numerical modelling to simulate the future potential reactivation and runout of landslides as debris flows under monsoon rainfall, identifying locations potentially at risk. This analysis shows that landslide hazard was higher in November 2019 as compared to immediately after the 2015 earthquake, with a considerable portion of the landscape being impacted by landsliding. We show that, while pre-existing landslides continued to pose the majority of hazard in the aftermath of the earthquake, a significant number of landslides also occurred in new locations. We discuss the value of this type of analysis in informing the reconstruction and management of settlements at risk by summarizing how this work was integrated into the project Durable Solutions II, that supported communities at risk from landslides. Finally, we consider how such data could be used in future to inform risk sensitive land-use planning and disaster recovery, and to mitigate the impacts of future landsliding in Nepal and beyond.

Item Type:Article
Full text:Publisher-imposed embargo
(AM) Accepted Manuscript
File format - PDF
(6210Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution Non-commercial No Derivatives 4.0.
Download PDF
(7149Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.pdisas.2021.100159
Publisher statement:© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Date accepted:24 February 2021
Date deposited:26 February 2021
Date of first online publication:02 March 2021
Date first made open access:26 July 2021

Save or Share this output

Export:
Export
Look up in GoogleScholar