We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Scale and isolation sensitivity of diphoton distributions at the LHC

Gehrmann, Thomas and Glover, Nigel and Huss, Alexander and Whitehead, James (2021) 'Scale and isolation sensitivity of diphoton distributions at the LHC.', Journal of high energy physics., 2021 (1). p. 108.


Precision measurements of diphoton distributions at the LHC display some tension with theory predictions, obtained at next-to-next-to-leading order (NNLO) in QCD. We revisit the theoretical uncertainties arising from the approximation of the experimental photon isolation by smooth-cone isolation, and from the choice of functional form for the renormalisation and factorisation scales. We find that the resulting variations are substantial overall, and enhanced in certain regions. We discuss the infrared sensitivity at the cone boundaries in cone-based isolation in related distributions. Finally, we compare predictions made with alternative choices of dynamical scale and isolation prescriptions to experimental data from ATLAS at 8 TeV, observing improved agreement. This contrasts with previous results, highlighting that scale choice and isolation prescription are potential sources of theoretical uncertainty that were previously underestimated.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
Publisher Web site:
Publisher statement:Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Date accepted:30 November 2020
Date deposited:15 March 2021
Date of first online publication:19 January 2021
Date first made open access:15 March 2021

Save or Share this output

Look up in GoogleScholar