Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Isolation of Arabidopsis extracellular ATP‐binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C‐LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity

Smith, Sarah J. and Goodman, Heather and Kroon, Johan T.M. and Brown, Adrian P. and Simon, William J. and Chivasa, Stephen (2021) 'Isolation of Arabidopsis extracellular ATP‐binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C‐LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity.', The Plant Journal, 106 (5). pp. 1387-1400.

Abstract

ATP is secreted to the extracellular matrix where it activates plasma membrane receptors for controlling plant growth and stress‐adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), the first plant ATP receptor was identified, but key downstream proteins are sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress‐responsive proteins using ATP‐affinity purification. We report three Arabidopsis proteins isolated by ATP‐affinity: PEROXIDASE 52, SUBTILASE‐LIKE SERINE PROTEASE 1.7, and PHOSPHOLIPASE C‐LIKE 1. In wildtype Arabidopsis, expression of genes encoding all three proteins responded to fumonisin B1, a cell death‐activating mycotoxin. Expression of PEROXIDASE 52 and PHOSPHOLIPASE C‐LIKE 1 genes was altered in fumonisin B1‐resistant salicylic acid induction‐deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C‐LIKE 1 expression in sid2 mutants, suggesting that inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C‐LIKE 1 were resistant to fumonisin B1‐induced death. Activation of PHOSPHOLIPASE C‐LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss‐of‐function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both wildtype and dorn1 mutants from fumonisin B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C‐LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in Arabidopsis stress response to fumonisin B1.

Item Type:Article
Full text:Publisher-imposed embargo
(AM) Accepted Manuscript
File format - PDF (Accepted Article)
(29079Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
(2440Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1111/tpj.15243
Publisher statement:© 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Date accepted:08 March 2021
Date deposited:25 March 2021
Date of first online publication:18 March 2021
Date first made open access:25 March 2021

Save or Share this output

Export:
Export
Look up in GoogleScholar