Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry

Benítez-Pérez, José Manuel and Castiñeiras, Pedro and Gómez-Barreiro, Juan and Martínez Catalán, José R. and Kylander-Clark, Andrew and Holdsworth, Robert E. (2020) 'Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry.', Solid Earth, 11 (6). pp. 2303-2325.

Abstract

The Sobrado unit, within the upper part of the Órdenes Complex (NW Spain) represents an allochthonous tectonic slice of exhumed high-grade metamorphic rocks formed during a complex sequence of orogenic processes in the middle to lower crust. In order to constrain those processes, U–Pb geochronology and rare-earth element (REE) analyses of accessory minerals in migmatitic paragneiss (monazite, zircon) and mylonitic amphibolites (titanite) were conducted using laser ablation split stream inductively coupled plasma mass spectrometry (LASS-ICP-MS). The youngest metamorphic zircon age obtained coincides with a Middle Devonian concordia monazite age (∼380 Ma) and is interpreted to represent the minimum age of the Sobrado high-P granulite facies metamorphism that occurred during the early stages of the Variscan orogeny. Metamorphic titanite from the mylonitic amphibolites yield a Late Devonian age (∼365 Ma) and track the progressive exhumation of the Sobrado unit. In zircon, cathodoluminescence images and REE analyses allow two aliquots with different origins in the paragneiss to be distinguished. An Early Ordovician age (∼490 Ma) was obtained for metamorphic zircons, although with a large dispersion, related to the evolution of the rock. This age is considered to mark the onset of granulite facies metamorphism in the Sobrado unit under intermediate-P conditions, and related to intrusive magmatism and coeval burial in a magmatic arc setting. A maximum depositional age for the Sobrado unit is established in the late Cambrian (∼511 Ma). The zircon dataset also record several inherited populations. The youngest cogenetic set of zircons yields crystallization ages of 546 and 526 Ma which are thought to be related to the peri-Gondwanan magmatic arc. The additional presence of inherited zircons older than 1000 Ma is interpreted as suggesting a West African Craton provenance.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
(21246Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.5194/se-11-2303-2020
Publisher statement:© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Date accepted:02 October 2020
Date deposited:26 May 2021
Date of first online publication:30 November 2020
Date first made open access:26 May 2021

Save or Share this output

Export:
Export
Look up in GoogleScholar