Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

In situ quantification of crystallisation kinetics 1 of plagioclase and clinopyroxene in basaltic magma: implications for lava flow

Le Gall, Nolwenn and Arzilli, Fabio and La Spina, Giuseppe and Polacci, Margherita and Cai, Biao and Hartley, Margaret E. and Vo, Nghia, T. and Atwood, Robert C. and Di Genova, Danilo and Nonni, Sara and Llewellin, Edward W. and Burton, Mike R. and Lee, Peter D. (2021) 'In situ quantification of crystallisation kinetics 1 of plagioclase and clinopyroxene in basaltic magma: implications for lava flow.', Earth and Planetary Science Letters, 568 . p. 117016.

Abstract

Crystallisation is a complex process that significantly affects the rheology of magma, and thus the flow dynamics during a volcanic eruption. For example, the evolution of crystal fraction, size and shape has a strong impact on the surface crust formation of a lava flow, and accessing such information is essential for accurate modelling of lava flow dynamics. To investigate the role of crystallisation kinetics on lava flow behaviour, we performed real-time, in situ synchrotron X-ray microtomography, studying the influence of temperature-time paths on the nucleation and growth of clinopyroxene and plagioclase in an oxidised, nominally anhydrous basaltic magma. Crystallisation experiments were performed at atmospheric pressure in air and temperatures from 1250 °C to 1100 °C, using a bespoke high-temperature resistance furnace. Depending on the cooling regime (single step versus continuous), two different crystal phases (either clinopyroxene or plagioclase) were produced, and we quantified their growth from both global and individual 3D texture analyses. The textural evolution of charges suggests that suppression of crystal nucleation is due to changes in the melt composition with increasing undercooling and time. Using existing viscosity models, we inferred the effect of crystals on the viscosity evolution of our crystal-bearing samples to trace changes in rheological behaviour during lava emplacement. We observe that under continuous cooling, both the onsets of the pāhoehoe-‘a‘ā transition and of non-Newtonian behaviour occur within a shorter time frame. With varying both temperature and time, we also either reproduced or approached the clinopyroxene and plagioclase phenocryst abundances and compositions of the Etna lava used as starting material, demonstrating that real-time synchrotron X-ray tomography is an ideal approach to unravel the final solidification history of basaltic lavas. This imaging technology has indeed the potential to provide input into lava flow models and hence our ability to forecast volcanic hazards.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives 4.0.
Download PDF
(10231Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.epsl.2021.117016
Publisher statement:© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Date accepted:20 May 2021
Date deposited:28 May 2021
Date of first online publication:07 June 2021
Date first made open access:07 June 2022

Save or Share this output

Export:
Export
Look up in GoogleScholar