Bhowmik, N. and Gaus, Y.F.A. and Breckon, T.P. (2021) 'On the Impact of Using X-Ray Energy Response Imagery for Object Detection via Convolutional Neural Networks.', International Conference on Image Processing Anchorage, AK, 19-22 Sept 2021.
Abstract
Automatic detection of prohibited items within complex and cluttered X-ray security imagery is essential to maintaining transport security, where prior work on automatic prohibited item detection focus primarily on pseudo-colour (rgb) X-ray imagery. In this work we study the impact of variant X-ray imagery, i.e., X-ray energy response (high, low) and effectivez compared to rgb, via the use of deep Convolutional Neural Networks (CNN) for the joint object detection and segmentation task posed within X-ray baggage security screening. We evaluate state-of-the-art CNN architectures (Mask R-CNN, YOLACT, CARAFE and Cascade Mask R-CNN) to explore the transferability of models trained with such ‘raw’ variant imagery between the varying X-ray security scanners that exhibits differing imaging geometries, image resolutions and material colour profiles. Overall, we observe maximal detection performance using CARAFE, attributable to training using combination of rgb, high, low, and effective-z Xray imagery, obtaining 0.7 mean Average Precision (mAP) for a six class object detection problem. Our results also exhibit a remarkable degree of generalisation capability in terms of cross-scanner transferability (AP: 0.835/0.611) for a one class object detection problem by combining rgb, high, low, and effective-z imagery.
Item Type: | Conference item (Paper) |
---|---|
Full text: | (AM) Accepted Manuscript Download PDF (3406Kb) |
Status: | Peer-reviewed |
Publisher Web site: | https://www.2021.ieeeicip.org/ |
Publisher statement: | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Date accepted: | 20 May 2021 |
Date deposited: | 24 June 2021 |
Date of first online publication: | 19 September 2021 |
Date first made open access: | 23 September 2021 |
Save or Share this output
Export: | |
Look up in GoogleScholar |